Upload TransformerForMaskedLM
Browse files- config.json +2 -1
- model.safetensors +3 -0
- modeling_transformer.py +600 -0
config.json
CHANGED
|
@@ -7,7 +7,8 @@
|
|
| 7 |
"attention_probs_dropout_prob": 0.1,
|
| 8 |
"attn_impl": "sdpa",
|
| 9 |
"auto_map": {
|
| 10 |
-
"AutoConfig": "configuration_transformer.TransformerConfig"
|
|
|
|
| 11 |
},
|
| 12 |
"decoder_start_token_id": 1,
|
| 13 |
"decoder_vocab_size": 36,
|
|
|
|
| 7 |
"attention_probs_dropout_prob": 0.1,
|
| 8 |
"attn_impl": "sdpa",
|
| 9 |
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_transformer.TransformerConfig",
|
| 11 |
+
"AutoModelForMaskedLM": "modeling_transformer.TransformerForMaskedLM"
|
| 12 |
},
|
| 13 |
"decoder_start_token_id": 1,
|
| 14 |
"decoder_vocab_size": 36,
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96a62f322c3c4c8399ab9432c38bb392a175bd82dfdd246de5de4a4bf43d1616
|
| 3 |
+
size 1208482648
|
modeling_transformer.py
ADDED
|
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .configuration_transformer import TransformerConfig
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import init
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch.nn.parameter import Parameter
|
| 7 |
+
from torch import nn
|
| 8 |
+
from typing import Tuple, List
|
| 9 |
+
from itertools import chain
|
| 10 |
+
from transformers.modeling_outputs import (
|
| 11 |
+
BaseModelOutput,
|
| 12 |
+
MaskedLMOutput,
|
| 13 |
+
CausalLMOutput,
|
| 14 |
+
)
|
| 15 |
+
from torch.utils.checkpoint import checkpoint
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
import math
|
| 18 |
+
try:
|
| 19 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
| 20 |
+
except ImportError:
|
| 21 |
+
pass
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
A_LARGE_NEGATIVE_NUMER = -1e10
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def create_4d_mask(attn_mask, return_type="bool", x=None, causal=False):
|
| 28 |
+
B, L = attn_mask.shape
|
| 29 |
+
device = attn_mask.device
|
| 30 |
+
mask_4d = torch.eq(attn_mask[:, None, :, None], attn_mask[:, None, None, :])
|
| 31 |
+
if causal:
|
| 32 |
+
causal_mask = torch.tril(torch.ones(L, L, device=device)).unsqueeze(0).unsqueeze(0)
|
| 33 |
+
mask_4d = mask_4d & causal_mask
|
| 34 |
+
if return_type == "bool":
|
| 35 |
+
return mask_4d.to(torch.bool)
|
| 36 |
+
elif return_type == "float":
|
| 37 |
+
mask_4d = mask_4d.to(x.dtype)
|
| 38 |
+
return mask_4d * 0 + (1 - mask_4d) * A_LARGE_NEGATIVE_NUMER
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def rotate_half(x):
|
| 42 |
+
return torch.cat((-x[..., x.shape[-1] // 2 :], x[..., : x.shape[-1] // 2]), dim=-1)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
| 46 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 47 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 48 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 49 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 50 |
+
return q_embed, k_embed
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def apply_rotary_pos_emb_1(x, cos, sin, unsqueeze_dim=1):
|
| 54 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 55 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 56 |
+
return (x * cos) + (rotate_half(x) * sin)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class RMSNorm(nn.Module):
|
| 60 |
+
|
| 61 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.eps = eps
|
| 64 |
+
init_device = None
|
| 65 |
+
self.weight = Parameter(
|
| 66 |
+
torch.empty(dim, device=init_device, dtype=torch.float32)
|
| 67 |
+
)
|
| 68 |
+
init.ones_(self.weight)
|
| 69 |
+
|
| 70 |
+
def _norm(self, x):
|
| 71 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 72 |
+
|
| 73 |
+
def forward(self, x : torch.Tensor) -> torch.Tensor:
|
| 74 |
+
output = self._norm(x.float()).type_as(x)
|
| 75 |
+
return output * self.weight
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class TokenEmbedding(nn.Module):
|
| 79 |
+
|
| 80 |
+
def __init__(self, config: TransformerConfig):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.config = config
|
| 83 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 84 |
+
if config.embedding_layer_norm:
|
| 85 |
+
if config.layernorm_type == "layernorm":
|
| 86 |
+
self.rms_norm = nn.LayerNorm(
|
| 87 |
+
config.hidden_size, eps=config.layer_norm_eps, bias=False
|
| 88 |
+
) # For name compatibility
|
| 89 |
+
elif config.layernorm_type == "rmsnorm":
|
| 90 |
+
self.rms_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 91 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 92 |
+
self.position_embedding_type = config.position_embedding_type
|
| 93 |
+
self.padding_idx = config.pad_token_id
|
| 94 |
+
self.token_dropout = config.token_dropout
|
| 95 |
+
self.mask_token_id = config.mask_token_id
|
| 96 |
+
|
| 97 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 98 |
+
embeddings = self.word_embeddings(input_ids)
|
| 99 |
+
if self.config.embedding_shrinking and self.training:
|
| 100 |
+
# Embedding shrinking (https://keg.cs.tsinghua.edu.cn/jietang/publications/ICLR23-GLM-130B.pdf)
|
| 101 |
+
embeddings = embeddings * 0.1 + embeddings.detach() * 0.9
|
| 102 |
+
if self.config.embedding_layer_norm:
|
| 103 |
+
embeddings = self.rms_norm(embeddings)
|
| 104 |
+
return embeddings
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class RotaryEmbedding(nn.Module):
|
| 108 |
+
|
| 109 |
+
def __init__(self, dim: int, b: int = 10000):
|
| 110 |
+
super().__init__()
|
| 111 |
+
inv_freq = 1.0 / (
|
| 112 |
+
b ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)
|
| 113 |
+
)
|
| 114 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 115 |
+
|
| 116 |
+
@torch.no_grad()
|
| 117 |
+
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 118 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 119 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 120 |
+
with torch.autocast(device_type=x.device.type, enabled=False):
|
| 121 |
+
freqs = inv_freq_expanded.float() @ position_ids_expanded.float()
|
| 122 |
+
freqs = freqs.transpose(1, 2)
|
| 123 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 124 |
+
cos = emb.cos()
|
| 125 |
+
sin = emb.sin()
|
| 126 |
+
return cos.to(x.dtype), sin.to(x.dtype)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class SelfAttention(nn.Module):
|
| 130 |
+
|
| 131 |
+
def __init__(self, config: TransformerConfig, causal: bool=False):
|
| 132 |
+
super().__init__()
|
| 133 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 134 |
+
raise ValueError(
|
| 135 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 136 |
+
f"heads ({config.num_attention_heads})"
|
| 137 |
+
)
|
| 138 |
+
self.config = config
|
| 139 |
+
self.num_attention_heads = config.num_attention_heads
|
| 140 |
+
self.attention_head_size = config.hidden_size // config.num_attention_heads
|
| 141 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 142 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
| 143 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
| 144 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
| 145 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 146 |
+
self.output = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
| 147 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 148 |
+
self.config = config
|
| 149 |
+
self.causal = causal
|
| 150 |
+
|
| 151 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
+
new_x_shape = x.size()[:-1] + (
|
| 153 |
+
self.num_attention_heads,
|
| 154 |
+
self.attention_head_size,
|
| 155 |
+
) # [B, L, D] -> [B, L, num_heads, head_size]
|
| 156 |
+
x = x.view(new_x_shape)
|
| 157 |
+
return x.permute(
|
| 158 |
+
0, 2, 1, 3
|
| 159 |
+
) # [B, L, num_heads, head_size] -> [B, num_heads, L, head_size] for broadcasting in the future
|
| 160 |
+
|
| 161 |
+
def naive_forward(
|
| 162 |
+
self,
|
| 163 |
+
hidden_states: torch.Tensor,
|
| 164 |
+
attention_mask: torch.Tensor = None,
|
| 165 |
+
rotary_embeddings: torch.Tensor = None,
|
| 166 |
+
output_attentions: bool = False,
|
| 167 |
+
) -> Tuple[torch.Tensor]:
|
| 168 |
+
B, L, D = hidden_states.size()
|
| 169 |
+
query_states = self.query(hidden_states)
|
| 170 |
+
key_states = self.key(hidden_states)
|
| 171 |
+
value_states = self.value(hidden_states)
|
| 172 |
+
key_states = self.transpose_for_scores(key_states).contiguous() # [B, L, D] -> [B, num_heads, L, head_size]
|
| 173 |
+
query_states = self.transpose_for_scores(query_states).contiguous() # [B, L, D] -> [B, num_heads, L, head_size]
|
| 174 |
+
value_states = self.transpose_for_scores(value_states).contiguous() # [B, L, D] -> [B, num_heads, L, head_size]
|
| 175 |
+
if rotary_embeddings is not None:
|
| 176 |
+
cos, sin = rotary_embeddings
|
| 177 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 178 |
+
query_states, key_states, cos, sin
|
| 179 |
+
)
|
| 180 |
+
scale_factor = self.attention_head_size**-0.5
|
| 181 |
+
attention_scores = torch.matmul(
|
| 182 |
+
query_states, key_states.transpose(-1, -2)
|
| 183 |
+
) # [B, num_heads, L, L]
|
| 184 |
+
attention_scores = attention_scores * scale_factor
|
| 185 |
+
if attention_mask is not None:
|
| 186 |
+
attention_scores = attention_scores + attention_mask
|
| 187 |
+
attention_probs = nn.functional.softmax(
|
| 188 |
+
attention_scores, dim=-1, dtype=torch.float32
|
| 189 |
+
).to(query_states.dtype)
|
| 190 |
+
attention_probs = self.dropout(attention_probs)
|
| 191 |
+
context = torch.matmul(
|
| 192 |
+
attention_probs, value_states
|
| 193 |
+
) # [B, num_heads, L, head_size]
|
| 194 |
+
context = context.permute(
|
| 195 |
+
0, 2, 1, 3
|
| 196 |
+
).contiguous() # [B, L, num_heads, head_size]
|
| 197 |
+
context = context.view(B, L, D)
|
| 198 |
+
context = self.output(context)
|
| 199 |
+
context = self.output_dropout(context)
|
| 200 |
+
return_attention_probs = attention_probs.detach() if output_attentions else None
|
| 201 |
+
return context, return_attention_probs
|
| 202 |
+
|
| 203 |
+
def sdpa_forward(
|
| 204 |
+
self,
|
| 205 |
+
hidden_states: torch.Tensor,
|
| 206 |
+
attention_mask: torch.Tensor = None,
|
| 207 |
+
rotary_embeddings: torch.Tensor = None,
|
| 208 |
+
) -> Tuple[torch.Tensor]:
|
| 209 |
+
B, L, D = hidden_states.size()
|
| 210 |
+
query_states = self.query(hidden_states)
|
| 211 |
+
key_states = self.key(hidden_states)
|
| 212 |
+
value_states = self.value(hidden_states)
|
| 213 |
+
key_states = self.transpose_for_scores(key_states).contiguous()
|
| 214 |
+
query_states = self.transpose_for_scores(query_states).contiguous()
|
| 215 |
+
value_states = self.transpose_for_scores(value_states).contiguous()
|
| 216 |
+
if rotary_embeddings is not None:
|
| 217 |
+
cos, sin = rotary_embeddings
|
| 218 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 219 |
+
query_states, key_states, cos, sin
|
| 220 |
+
)
|
| 221 |
+
scale_factor = self.attention_head_size**-0.5
|
| 222 |
+
dropout_p = self.config.attention_probs_dropout_prob if self.training else 0
|
| 223 |
+
context = F.scaled_dot_product_attention(
|
| 224 |
+
query=query_states,
|
| 225 |
+
key=key_states,
|
| 226 |
+
value=value_states,
|
| 227 |
+
attn_mask=attention_mask,
|
| 228 |
+
dropout_p=dropout_p,
|
| 229 |
+
scale=scale_factor,
|
| 230 |
+
) # [B, num_heads, L, head_size]
|
| 231 |
+
context = context.permute(
|
| 232 |
+
0, 2, 1, 3
|
| 233 |
+
).contiguous() # [B, L, num_heads, head_size]
|
| 234 |
+
context = context.view(B, L, D)
|
| 235 |
+
context = self.output(context)
|
| 236 |
+
context = self.output_dropout(context)
|
| 237 |
+
return_attention_probs = None
|
| 238 |
+
return context, return_attention_probs
|
| 239 |
+
|
| 240 |
+
def flash_attn_forward(
|
| 241 |
+
self,
|
| 242 |
+
hidden_states: torch.Tensor,
|
| 243 |
+
rotary_embeddings: torch.Tensor = None,
|
| 244 |
+
lengths: List[List[int]] = None,
|
| 245 |
+
) -> Tuple[torch.Tensor]:
|
| 246 |
+
B, L, D = hidden_states.size()
|
| 247 |
+
NH = self.num_attention_heads
|
| 248 |
+
H = self.attention_head_size
|
| 249 |
+
|
| 250 |
+
scale_factor = self.attention_head_size**-0.5
|
| 251 |
+
query_states = self.query(hidden_states)
|
| 252 |
+
key_states = self.key(hidden_states)
|
| 253 |
+
value_states = self.value(hidden_states)
|
| 254 |
+
|
| 255 |
+
if lengths is not None:
|
| 256 |
+
# flash_attn_varlen_func
|
| 257 |
+
query_states = query_states.view(B * L, NH, H).contiguous()
|
| 258 |
+
key_states = key_states.view(B * L, NH, H).contiguous()
|
| 259 |
+
value_states = value_states.view(B * L, NH, H).contiguous()
|
| 260 |
+
if rotary_embeddings is not None:
|
| 261 |
+
cos, sin = rotary_embeddings
|
| 262 |
+
cos = cos.view(B * L, 1, H)
|
| 263 |
+
sin = sin.view(B * L, 1, H)
|
| 264 |
+
query_states = (query_states * cos) + (rotate_half(query_states) * sin)
|
| 265 |
+
key_states = (key_states * cos) + (rotate_half(key_states) * sin)
|
| 266 |
+
lengths = [0, ] + list(chain(*lengths))
|
| 267 |
+
lengths = torch.tensor(lengths, dtype=torch.int, device=query_states.device)
|
| 268 |
+
max_seqlen = torch.max(lengths)
|
| 269 |
+
cum_seqlen = torch.cumsum(lengths, dim=0, dtype=torch.int)
|
| 270 |
+
context = flash_attn_varlen_func(
|
| 271 |
+
q=query_states,
|
| 272 |
+
k=key_states,
|
| 273 |
+
v=value_states,
|
| 274 |
+
cu_seqlens_q=cum_seqlen,
|
| 275 |
+
cu_seqlens_k=cum_seqlen,
|
| 276 |
+
max_seqlen_q=max_seqlen,
|
| 277 |
+
max_seqlen_k=max_seqlen,
|
| 278 |
+
causal=self.causal,
|
| 279 |
+
return_attn_probs=False,
|
| 280 |
+
softmax_scale=scale_factor,
|
| 281 |
+
)
|
| 282 |
+
else:
|
| 283 |
+
query_states = query_states.view(B, L, NH, H).contiguous()
|
| 284 |
+
key_states = key_states.view(B, L, NH, H).contiguous()
|
| 285 |
+
value_states = value_states.view(B, L, NH, H).contiguous()
|
| 286 |
+
if rotary_embeddings is not None:
|
| 287 |
+
cos, sin = rotary_embeddings
|
| 288 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 289 |
+
query_states, key_states, cos, sin, unsqueeze_dim=2
|
| 290 |
+
)
|
| 291 |
+
context = flash_attn_func(
|
| 292 |
+
q=query_states,
|
| 293 |
+
k=key_states,
|
| 294 |
+
v=value_states,
|
| 295 |
+
softmax_scale=scale_factor,
|
| 296 |
+
causal=self.causal,
|
| 297 |
+
)
|
| 298 |
+
context = context.view(B, L, D).contiguous()
|
| 299 |
+
context = self.output(context)
|
| 300 |
+
context = self.output_dropout(context)
|
| 301 |
+
return_attention_probs = None
|
| 302 |
+
return context, return_attention_probs
|
| 303 |
+
|
| 304 |
+
def forward(
|
| 305 |
+
self,
|
| 306 |
+
hidden_states: torch.Tensor,
|
| 307 |
+
attention_mask: torch.Tensor = None,
|
| 308 |
+
lengths: List[torch.Tensor] = None,
|
| 309 |
+
rotary_embeddings: torch.Tensor = None,
|
| 310 |
+
output_attentions: bool = False,
|
| 311 |
+
):
|
| 312 |
+
if self.config.attn_impl == "naive":
|
| 313 |
+
return self.naive_forward(
|
| 314 |
+
hidden_states=hidden_states,
|
| 315 |
+
attention_mask=attention_mask,
|
| 316 |
+
rotary_embeddings=rotary_embeddings,
|
| 317 |
+
output_attentions=output_attentions,
|
| 318 |
+
)
|
| 319 |
+
elif self.config.attn_impl == "sdpa":
|
| 320 |
+
return self.sdpa_forward(
|
| 321 |
+
hidden_states=hidden_states,
|
| 322 |
+
attention_mask=attention_mask,
|
| 323 |
+
rotary_embeddings=rotary_embeddings,
|
| 324 |
+
)
|
| 325 |
+
elif self.config.attn_impl == "flash_attn":
|
| 326 |
+
return self.flash_attn_forward(
|
| 327 |
+
hidden_states=hidden_states,
|
| 328 |
+
rotary_embeddings=rotary_embeddings,
|
| 329 |
+
lengths=lengths,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class FeedForwardNetwork(nn.Module):
|
| 334 |
+
|
| 335 |
+
def __init__(self, config: TransformerConfig):
|
| 336 |
+
super().__init__()
|
| 337 |
+
self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 338 |
+
self.w2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 339 |
+
if config.act_fn == "gelu":
|
| 340 |
+
self.act_fn = nn.GELU()
|
| 341 |
+
elif config.act_fn == "silu":
|
| 342 |
+
self.act_fn = nn.SiLU()
|
| 343 |
+
|
| 344 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 345 |
+
return self.w2(self.act_fn(self.w1(hidden_states)))
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class TransFormerLayer(nn.Module):
|
| 349 |
+
|
| 350 |
+
def __init__(self, config: TransformerConfig, causal=False):
|
| 351 |
+
super().__init__()
|
| 352 |
+
self.config = config
|
| 353 |
+
self.causal = causal
|
| 354 |
+
self.attention = SelfAttention(config, causal=causal)
|
| 355 |
+
self.ffn = FeedForwardNetwork(config)
|
| 356 |
+
if config.layernorm_type == "layernorm":
|
| 357 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, bias=False)
|
| 358 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, bias=False)
|
| 359 |
+
else:
|
| 360 |
+
self.pre_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 361 |
+
self.post_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 362 |
+
|
| 363 |
+
def forward(
|
| 364 |
+
self,
|
| 365 |
+
hidden_states: torch.Tensor,
|
| 366 |
+
attention_mask: torch.Tensor = None,
|
| 367 |
+
lengths: List[torch.Tensor] = None,
|
| 368 |
+
rotary_embeddings: torch.Tensor = None,
|
| 369 |
+
output_attentions: bool = False,
|
| 370 |
+
):
|
| 371 |
+
residual = hidden_states
|
| 372 |
+
hidden_states = self.pre_norm(hidden_states)
|
| 373 |
+
hidden_states, attn_probs = self.attention(
|
| 374 |
+
hidden_states=hidden_states,
|
| 375 |
+
attention_mask=attention_mask,
|
| 376 |
+
lengths=lengths,
|
| 377 |
+
rotary_embeddings=rotary_embeddings,
|
| 378 |
+
output_attentions=output_attentions
|
| 379 |
+
)
|
| 380 |
+
hidden_states = residual + hidden_states
|
| 381 |
+
residual = hidden_states
|
| 382 |
+
hidden_states = self.post_norm(hidden_states)
|
| 383 |
+
hidden_states = self.ffn(hidden_states)
|
| 384 |
+
hidden_states = residual + hidden_states
|
| 385 |
+
return (hidden_states, attn_probs)
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class TransformerCore(nn.Module):
|
| 389 |
+
|
| 390 |
+
def __init__(self, config: TransformerConfig, causal=False):
|
| 391 |
+
super().__init__()
|
| 392 |
+
self.config = config
|
| 393 |
+
self.layer = []
|
| 394 |
+
for _ in range(config.num_hidden_layers):
|
| 395 |
+
sub_layer = TransFormerLayer(config, causal=causal)
|
| 396 |
+
self.layer.append(sub_layer)
|
| 397 |
+
self.layer = nn.ModuleList(self.layer)
|
| 398 |
+
if self.config.layernorm_type == "layernorm":
|
| 399 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, bias=False)
|
| 400 |
+
else:
|
| 401 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 402 |
+
self.gradient_checkpointing = False
|
| 403 |
+
|
| 404 |
+
def forward(
|
| 405 |
+
self,
|
| 406 |
+
hidden_states: torch.Tensor,
|
| 407 |
+
attention_mask: torch.Tensor = None,
|
| 408 |
+
lengths: List[torch.Tensor] = None,
|
| 409 |
+
rotary_embeddings: torch.Tensor = None,
|
| 410 |
+
output_attentions: bool = False,
|
| 411 |
+
output_hidden_states=False,
|
| 412 |
+
):
|
| 413 |
+
all_hidden_states = []
|
| 414 |
+
all_self_attentions = []
|
| 415 |
+
for i, layer_module in enumerate(self.layer):
|
| 416 |
+
if output_hidden_states:
|
| 417 |
+
all_hidden_states.append(hidden_states.detach().cpu())
|
| 418 |
+
if torch.is_grad_enabled() and hidden_states.requires_grad and self.gradient_checkpointing:
|
| 419 |
+
hidden_states, attn_probs = checkpoint(
|
| 420 |
+
layer_module,
|
| 421 |
+
hidden_states,
|
| 422 |
+
attention_mask,
|
| 423 |
+
rotary_embeddings,
|
| 424 |
+
lengths,
|
| 425 |
+
output_attentions,
|
| 426 |
+
use_reentrant=False,
|
| 427 |
+
)
|
| 428 |
+
else:
|
| 429 |
+
hidden_states, attn_probs = layer_module(
|
| 430 |
+
hidden_states=hidden_states,
|
| 431 |
+
attention_mask=attention_mask,
|
| 432 |
+
lengths=lengths,
|
| 433 |
+
rotary_embeddings=rotary_embeddings,
|
| 434 |
+
output_attentions=output_attentions
|
| 435 |
+
)
|
| 436 |
+
if output_attentions:
|
| 437 |
+
all_self_attentions.append(attn_probs.detach().cpu() if attn_probs is not None else None)
|
| 438 |
+
hidden_states = self.norm(hidden_states)
|
| 439 |
+
if output_hidden_states:
|
| 440 |
+
all_hidden_states.append(hidden_states.detach().cpu(), )
|
| 441 |
+
return BaseModelOutput(
|
| 442 |
+
last_hidden_state=hidden_states,
|
| 443 |
+
hidden_states=all_hidden_states,
|
| 444 |
+
attentions=all_self_attentions,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
class BaseTransformerModel(PreTrainedModel):
|
| 449 |
+
|
| 450 |
+
config_class = TransformerConfig
|
| 451 |
+
base_model_prefix = "transformer"
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class TransformerModel(BaseTransformerModel):
|
| 455 |
+
|
| 456 |
+
def __init__(self, config: TransformerConfig, causal=False):
|
| 457 |
+
super().__init__(config)
|
| 458 |
+
self.config = config
|
| 459 |
+
self.rotary_embedding = RotaryEmbedding(dim=config.hidden_size // config.num_attention_heads)
|
| 460 |
+
self.token_embedding = TokenEmbedding(config)
|
| 461 |
+
self.transformer = TransformerCore(config, causal=causal)
|
| 462 |
+
self.causal = causal
|
| 463 |
+
|
| 464 |
+
def enable_gradient_checkpointing(self):
|
| 465 |
+
self.transformer.gradient_checkpointing = True
|
| 466 |
+
|
| 467 |
+
def disable_gradient_checkpointing(self):
|
| 468 |
+
self.transformer.gradient_checkpointing = False
|
| 469 |
+
|
| 470 |
+
def forward(
|
| 471 |
+
self,
|
| 472 |
+
input_ids: torch.Tensor,
|
| 473 |
+
attention_mask: torch.Tensor=None,
|
| 474 |
+
lengths: torch.Tensor=None,
|
| 475 |
+
position_ids: torch.Tensor=None,
|
| 476 |
+
output_attentions=False,
|
| 477 |
+
output_hidden_states=False,
|
| 478 |
+
) -> BaseModelOutput:
|
| 479 |
+
embeddings = self.token_embedding(input_ids)
|
| 480 |
+
if position_ids is None:
|
| 481 |
+
position_ids = torch.arange(input_ids.size(1)).to(input_ids.device)
|
| 482 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
| 483 |
+
if position_ids.shape != input_ids.shape:
|
| 484 |
+
raise ValueError("Position IDs must have the same shape as input_ids")
|
| 485 |
+
rotary_embeddings = self.rotary_embedding(embeddings, position_ids)
|
| 486 |
+
|
| 487 |
+
if attention_mask is not None:
|
| 488 |
+
if self.config.attn_impl == "flash_attn":
|
| 489 |
+
raise ValueError("Flash attention does not support specifying attention mask")
|
| 490 |
+
attention_mask = create_4d_mask(
|
| 491 |
+
attention_mask,
|
| 492 |
+
return_type="float",
|
| 493 |
+
x=embeddings,
|
| 494 |
+
causal=self.causal,
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
outputs = self.transformer(
|
| 498 |
+
hidden_states=embeddings,
|
| 499 |
+
attention_mask=attention_mask,
|
| 500 |
+
lengths=lengths,
|
| 501 |
+
rotary_embeddings=rotary_embeddings,
|
| 502 |
+
output_attentions=output_attentions,
|
| 503 |
+
output_hidden_states=output_hidden_states
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
return BaseModelOutput(
|
| 507 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 508 |
+
hidden_states=outputs.hidden_states,
|
| 509 |
+
attentions=outputs.attentions,
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
class TransformerForMaskedLM(BaseTransformerModel):
|
| 514 |
+
|
| 515 |
+
def __init__(self, config: TransformerConfig):
|
| 516 |
+
super().__init__(config)
|
| 517 |
+
self.model = TransformerModel(config, causal=False)
|
| 518 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 519 |
+
self.post_init()
|
| 520 |
+
|
| 521 |
+
def forward(
|
| 522 |
+
self,
|
| 523 |
+
input_ids: torch.Tensor,
|
| 524 |
+
attention_mask: torch.Tensor=None,
|
| 525 |
+
lengths: torch.Tensor=None,
|
| 526 |
+
position_ids: torch.Tensor=None,
|
| 527 |
+
labels: torch.Tensor=None,
|
| 528 |
+
output_attentions=False,
|
| 529 |
+
output_hidden_states=False,
|
| 530 |
+
) -> MaskedLMOutput:
|
| 531 |
+
outputs = self.model(
|
| 532 |
+
input_ids=input_ids,
|
| 533 |
+
attention_mask=attention_mask,
|
| 534 |
+
lengths=lengths,
|
| 535 |
+
position_ids=position_ids,
|
| 536 |
+
output_attentions=output_attentions,
|
| 537 |
+
output_hidden_states=output_hidden_states
|
| 538 |
+
)
|
| 539 |
+
sequence_output = outputs.last_hidden_state
|
| 540 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 541 |
+
loss = None
|
| 542 |
+
if labels is not None:
|
| 543 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 544 |
+
labels = labels.to(prediction_scores.device)
|
| 545 |
+
loss = loss_fct(
|
| 546 |
+
prediction_scores.view(-1, self.config.vocab_size).float(), labels.view(-1)
|
| 547 |
+
)
|
| 548 |
+
return MaskedLMOutput(
|
| 549 |
+
loss=loss,
|
| 550 |
+
logits=prediction_scores,
|
| 551 |
+
hidden_states=sequence_output,
|
| 552 |
+
attentions=outputs.attentions,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class TransformerForCausalLM(BaseTransformerModel):
|
| 557 |
+
|
| 558 |
+
def __init__(self, config):
|
| 559 |
+
super().__init__(config)
|
| 560 |
+
self.model = TransformerModel(config, causal=True)
|
| 561 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 562 |
+
self.init_weights()
|
| 563 |
+
|
| 564 |
+
def forward(
|
| 565 |
+
self,
|
| 566 |
+
input_ids: torch.Tensor,
|
| 567 |
+
attention_mask: torch.Tensor=None,
|
| 568 |
+
lengths: torch.Tensor=None,
|
| 569 |
+
position_ids: torch.Tensor=None,
|
| 570 |
+
labels: torch.Tensor=None,
|
| 571 |
+
output_attentions=False,
|
| 572 |
+
output_hidden_states=False,
|
| 573 |
+
reduction="mean",
|
| 574 |
+
) -> CausalLMOutput:
|
| 575 |
+
outputs = self.model(
|
| 576 |
+
input_ids=input_ids,
|
| 577 |
+
attention_mask=attention_mask,
|
| 578 |
+
lengths=lengths,
|
| 579 |
+
position_ids=position_ids,
|
| 580 |
+
output_attentions=output_attentions,
|
| 581 |
+
output_hidden_states=output_hidden_states
|
| 582 |
+
)
|
| 583 |
+
sequence_output = outputs.last_hidden_state
|
| 584 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 585 |
+
loss = None
|
| 586 |
+
if labels is not None:
|
| 587 |
+
loss_fct = nn.CrossEntropyLoss(reduction=reduction)
|
| 588 |
+
labels = labels.to(prediction_scores.device)
|
| 589 |
+
loss = loss_fct(
|
| 590 |
+
prediction_scores.view(-1, self.config.vocab_size).to(torch.float32),
|
| 591 |
+
labels.view(-1),
|
| 592 |
+
)
|
| 593 |
+
return CausalLMOutput(
|
| 594 |
+
loss=loss,
|
| 595 |
+
logits=prediction_scores,
|
| 596 |
+
hidden_states=outputs.hidden_states,
|
| 597 |
+
attentions=outputs.attentions,
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
TransformerForMaskedLM.register_for_auto_class("AutoModelForMaskedLM")
|