File size: 23,739 Bytes
531273f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
# Helion-V1.5-XL Deployment Guide
## Table of Contents
1. [Quick Start](#quick-start)
2. [System Requirements](#system-requirements)
3. [Installation Methods](#installation-methods)
4. [Configuration](#configuration)
5. [Deployment Architectures](#deployment-architectures)
6. [Performance Optimization](#performance-optimization)
7. [Monitoring and Logging](#monitoring-and-logging)
8. [Scaling Strategies](#scaling-strategies)
9. [Security Best Practices](#security-best-practices)
10. [Troubleshooting](#troubleshooting)
11. [Production Checklist](#production-checklist)
---
## Quick Start
### Minimal Setup (5 minutes)
```bash
# Install dependencies
pip install torch>=2.0.0 transformers>=4.35.0 accelerate
# Load and run model
python -c "
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = 'DeepXR/Helion-V1.5-XL'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map='auto'
)
prompt = 'Explain machine learning in simple terms:'
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
"
```
---
## System Requirements
### Hardware Requirements
#### Minimum Configuration
- **GPU**: NVIDIA GPU with 12GB VRAM (e.g., RTX 3090, RTX 4080)
- **RAM**: 32GB system RAM
- **Storage**: 50GB free space
- **CPU**: 8-core processor (Intel Xeon or AMD EPYC recommended)
- **Precision**: INT4 quantization required
#### Recommended Configuration
- **GPU**: NVIDIA A100 (40GB/80GB) or H100
- **RAM**: 64GB system RAM
- **Storage**: 200GB SSD (NVMe preferred)
- **CPU**: 16+ core processor
- **Network**: 10Gbps for distributed setups
- **Precision**: BF16 for optimal quality
#### Production Configuration
- **GPU**: 2x A100 80GB or 1x H100 80GB
- **RAM**: 128GB+ system RAM
- **Storage**: 500GB NVMe SSD
- **CPU**: 32+ core processor
- **Network**: 25Gbps+ with low latency
- **Redundancy**: Load balancer + multiple replicas
### Software Requirements
```
Operating System: Ubuntu 20.04+, Rocky Linux 8+, or similar
Python: 3.8 - 3.11
CUDA: 11.8 or 12.1+
cuDNN: 8.9+
NVIDIA Driver: 525+
```
### Compatibility Matrix
| Component | Minimum | Recommended | Latest Tested |
|-----------|---------|-------------|---------------|
| PyTorch | 2.0.0 | 2.1.0 | 2.1.2 |
| Transformers | 4.35.0 | 4.36.0 | 4.37.0 |
| CUDA | 11.8 | 12.1 | 12.3 |
| Python | 3.8 | 3.10 | 3.11 |
---
## Installation Methods
### Method 1: Standard Installation
```bash
# Create virtual environment
python -m venv helion-env
source helion-env/bin/activate # On Windows: helion-env\Scripts\activate
# Install dependencies
pip install --upgrade pip
pip install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.36.0 accelerate==0.24.0 bitsandbytes==0.41.0
# Verify installation
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
python -c "import transformers; print(f'Transformers version: {transformers.__version__}')"
```
### Method 2: Docker Deployment
```dockerfile
# Dockerfile
FROM nvidia/cuda:12.1.0-cudnn8-runtime-ubuntu22.04
# Install Python and dependencies
RUN apt-get update && apt-get install -y \
python3.10 \
python3-pip \
git \
&& rm -rf /var/lib/apt/lists/*
# Install PyTorch and transformers
RUN pip3 install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
RUN pip3 install transformers==4.36.0 accelerate==0.24.0 bitsandbytes==0.41.0
# Copy application code
WORKDIR /app
COPY . /app
# Set environment variables
ENV TRANSFORMERS_CACHE=/app/cache
ENV HF_HOME=/app/cache
# Run inference server
CMD ["python3", "inference_server.py"]
```
```bash
# Build and run
docker build -t helion-v15-xl .
docker run --gpus all -p 8000:8000 helion-v15-xl
```
### Method 3: Kubernetes Deployment
```yaml
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: helion-v15-xl
spec:
replicas: 3
selector:
matchLabels:
app: helion-v15-xl
template:
metadata:
labels:
app: helion-v15-xl
spec:
containers:
- name: helion
image: deepxr/helion-v15-xl:latest
resources:
limits:
nvidia.com/gpu: 1
memory: "64Gi"
cpu: "16"
requests:
nvidia.com/gpu: 1
memory: "48Gi"
cpu: "8"
ports:
- containerPort: 8000
env:
- name: MODEL_ID
value: "DeepXR/Helion-V1.5-XL"
- name: PRECISION
value: "bfloat16"
volumeMounts:
- name: model-cache
mountPath: /cache
volumes:
- name: model-cache
persistentVolumeClaim:
claimName: model-cache-pvc
---
apiVersion: v1
kind: Service
metadata:
name: helion-service
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 8000
selector:
app: helion-v15-xl
```
### Method 4: vLLM for Production
```bash
# Install vLLM for optimized serving
pip install vllm
# Run with vLLM
python -m vllm.entrypoints.openai.api_server \
--model DeepXR/Helion-V1.5-XL \
--tensor-parallel-size 1 \
--dtype bfloat16 \
--max-model-len 8192 \
--gpu-memory-utilization 0.9
```
---
## Configuration
### Environment Variables
```bash
# Model configuration
export MODEL_ID="DeepXR/Helion-V1.5-XL"
export MODEL_PRECISION="bfloat16"
export MAX_SEQUENCE_LENGTH=8192
export CACHE_DIR="/path/to/cache"
# Performance tuning
export CUDA_VISIBLE_DEVICES=0,1
export OMP_NUM_THREADS=8
export TOKENIZERS_PARALLELISM=true
# Memory optimization
export PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:512"
# Logging
export LOG_LEVEL="INFO"
export LOG_FILE="/var/log/helion.log"
```
### Configuration File (config.yaml)
```yaml
model:
model_id: "DeepXR/Helion-V1.5-XL"
precision: "bfloat16"
device_map: "auto"
load_in_4bit: false
load_in_8bit: false
generation:
max_new_tokens: 512
temperature: 0.7
top_p: 0.9
top_k: 50
repetition_penalty: 1.1
do_sample: true
server:
host: "0.0.0.0"
port: 8000
workers: 4
timeout: 120
max_batch_size: 32
cache:
enabled: true
directory: "/tmp/helion_cache"
max_size_gb: 100
safety:
content_filtering: true
pii_detection: true
rate_limiting: true
max_requests_per_minute: 60
monitoring:
enabled: true
metrics_port: 9090
log_level: "INFO"
```
---
## Deployment Architectures
### Architecture 1: Single Instance (Development)
```
βββββββββββββββ
β Client β
ββββββββ¬βββββββ
β
v
βββββββββββββββ
β FastAPI β
β Server β
ββββββββ¬βββββββ
β
v
βββββββββββββββ
β Model β
β (1x A100) β
βββββββββββββββ
```
**Use Case**: Development, testing, low-traffic applications
**Setup**:
```python
# server.py
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V1.5-XL",
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("DeepXR/Helion-V1.5-XL")
@app.post("/generate")
async def generate(prompt: str, max_tokens: int = 512):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=max_tokens)
return {"response": tokenizer.decode(outputs[0], skip_special_tokens=True)}
# Run: uvicorn server:app --host 0.0.0.0 --port 8000
```
### Architecture 2: Load Balanced (Production)
```
βββββββββββββββ
βLoad Balancerβ
ββββββββ¬βββββββ
β
ββββββββββββββββΌβββββββββββββββ
β β β
v v v
ββββββββββ ββββββββββ ββββββββββ
βInstanceβ βInstanceβ βInstanceβ
β 1 β β 2 β β 3 β
ββββββββββ ββββββββββ ββββββββββ
β β β
ββββββββββββββββΌβββββββββββββββ
β
v
βββββββββββββββ
β Redis β
β Cache β
βββββββββββββββ
```
**Use Case**: Production applications with high availability
### Architecture 3: Distributed Inference (High Throughput)
```
ββββββββββββββββ
β API Gateway β
ββββββββ¬ββββββββ
β
ββββββββ΄ββββββββ
β Job Schedulerβ
ββββββββ¬ββββββββ
β
ββββββββββββββββββββΌβββββββββββββββββββ
β β β
v v v
βββββββββββ βββββββββββ βββββββββββ
β GPU 0-1 β β GPU 2-3 β β GPU 4-5 β
β Tensor β β Tensor β β Tensor β
βParallel β βParallel β βParallel β
βββββββββββ βββββββββββ βββββββββββ
```
**Use Case**: Very high throughput, batch processing
**Setup with Ray Serve**:
```python
import ray
from ray import serve
from transformers import AutoModelForCausalLM, AutoTokenizer
ray.init()
serve.start()
@serve.deployment(num_replicas=3, ray_actor_options={"num_gpus": 1})
class HelionModel:
def __init__(self):
self.model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V1.5-XL",
torch_dtype=torch.bfloat16,
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained("DeepXR/Helion-V1.5-XL")
async def __call__(self, request):
prompt = await request.json()
inputs = self.tokenizer(prompt["text"], return_tensors="pt").to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=512)
return {"response": self.tokenizer.decode(outputs[0], skip_special_tokens=True)}
HelionModel.deploy()
```
---
## Performance Optimization
### 1. Quantization
```python
# 8-bit Quantization
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
)
model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V1.5-XL",
quantization_config=quantization_config,
device_map="auto"
)
# 4-bit Quantization (Maximum memory savings)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
```
### 2. Flash Attention
```python
# Enable Flash Attention 2
model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V1.5-XL",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2"
)
```
### 3. Compilation with torch.compile
```python
# Compile model for faster inference (PyTorch 2.0+)
model = torch.compile(model, mode="reduce-overhead")
```
### 4. KV Cache Optimization
```python
# Use cache for faster generation
outputs = model.generate(
**inputs,
max_new_tokens=512,
use_cache=True,
past_key_values=past_key_values # Reuse from previous generation
)
```
### 5. Batching
```python
# Process multiple prompts in batch
prompts = ["Prompt 1", "Prompt 2", "Prompt 3"]
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
# Decode all outputs
responses = [tokenizer.decode(out, skip_special_tokens=True) for out in outputs]
```
### Performance Benchmarks by Configuration
| Configuration | Tokens/sec | Latency (ms) | Memory (GB) | Cost Efficiency |
|---------------|------------|--------------|-------------|-----------------|
| A100 BF16 | 47.3 | 21.1 | 34.2 | Baseline |
| A100 INT8 | 89.6 | 11.2 | 17.8 | 1.9x faster |
| A100 INT4 | 134.2 | 7.5 | 10.4 | 2.8x faster |
| H100 BF16 | 78.1 | 12.8 | 34.2 | 1.65x faster |
| H100 INT4 | 218.7 | 4.6 | 10.4 | 4.6x faster |
---
## Monitoring and Logging
### Prometheus Metrics
```python
from prometheus_client import Counter, Histogram, Gauge, start_http_server
# Metrics
request_count = Counter('helion_requests_total', 'Total requests')
request_duration = Histogram('helion_request_duration_seconds', 'Request duration')
active_requests = Gauge('helion_active_requests', 'Active requests')
token_count = Counter('helion_tokens_generated', 'Tokens generated')
error_count = Counter('helion_errors_total', 'Total errors', ['error_type'])
# Start metrics server
start_http_server(9090)
```
### Structured Logging
```python
import logging
import json
from datetime import datetime
class JSONFormatter(logging.Formatter):
def format(self, record):
log_data = {
"timestamp": datetime.utcnow().isoformat(),
"level": record.levelname,
"message": record.getMessage(),
"module": record.module,
"function": record.funcName,
"line": record.lineno
}
return json.dumps(log_data)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger = logging.getLogger()
logger.addHandler(handler)
logger.setLevel(logging.INFO)
```
### Health Check Endpoint
```python
@app.get("/health")
async def health_check():
try:
# Check model is loaded
assert model is not None
# Check GPU is available
assert torch.cuda.is_available()
# Quick inference test
test_input = tokenizer("test", return_tensors="pt").to(model.device)
_ = model.generate(**test_input, max_new_tokens=1)
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat()}
except Exception as e:
return {"status": "unhealthy", "error": str(e)}, 503
```
### Grafana Dashboard Configuration
```json
{
"dashboard": {
"title": "Helion-V1.5-XL Monitoring",
"panels": [
{
"title": "Requests per Second",
"targets": [{"expr": "rate(helion_requests_total[1m])"}]
},
{
"title": "Average Latency",
"targets": [{"expr": "rate(helion_request_duration_seconds_sum[5m]) / rate(helion_request_duration_seconds_count[5m])"}]
},
{
"title": "GPU Utilization",
"targets": [{"expr": "nvidia_gpu_utilization"}]
},
{
"title": "GPU Memory Usage",
"targets": [{"expr": "nvidia_gpu_memory_used_bytes / nvidia_gpu_memory_total_bytes * 100"}]
}
]
}
}
```
---
## Scaling Strategies
### Horizontal Scaling
```bash
# Using Kubernetes HPA
kubectl autoscale deployment helion-v15-xl \
--min=2 \
--max=10 \
--cpu-percent=70 \
--memory-percent=80
```
### Vertical Scaling
| Traffic Level | Configuration | Instances |
|---------------|---------------|-----------|
| Low (< 10 req/s) | 1x A100 40GB, INT8 | 1 |
| Medium (10-50 req/s) | 1x A100 80GB, BF16 | 2-3 |
| High (50-200 req/s) | 2x A100 80GB, BF16 | 4-6 |
| Very High (200+ req/s) | Multiple H100 clusters | 10+ |
### Request Queuing
```python
from asyncio import Queue, create_task
import asyncio
request_queue = Queue(maxsize=100)
batch_size = 8
async def batch_processor():
while True:
batch = []
for _ in range(batch_size):
try:
item = await asyncio.wait_for(request_queue.get(), timeout=0.1)
batch.append(item)
except asyncio.TimeoutError:
break
if batch:
# Process batch
prompts = [item["prompt"] for item in batch]
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
# Return results
for item, output in zip(batch, outputs):
item["future"].set_result(tokenizer.decode(output, skip_special_tokens=True))
# Start background task
create_task(batch_processor())
```
---
## Security Best Practices
### 1. API Authentication
```python
from fastapi import HTTPException, Security
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
security = HTTPBearer()
async def verify_token(credentials: HTTPAuthorizationCredentials = Security(security)):
if credentials.credentials != os.getenv("API_TOKEN"):
raise HTTPException(status_code=401, detail="Invalid authentication")
return credentials.credentials
@app.post("/generate")
async def generate(prompt: str, token: str = Security(verify_token)):
# Process request
pass
```
### 2. Rate Limiting
```python
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
app.add_exception_handler(429, _rate_limit_exceeded_handler)
@app.post("/generate")
@limiter.limit("60/minute")
async def generate(request: Request, prompt: str):
# Process request
pass
```
### 3. Input Validation
```python
from pydantic import BaseModel, Field, validator
class GenerationRequest(BaseModel):
prompt: str = Field(..., min_length=1, max_length=8000)
max_tokens: int = Field(512, ge=1, le=2048)
temperature: float = Field(0.7, ge=0.0, le=2.0)
@validator('prompt')
def validate_prompt(cls, v):
# Check for malicious content
if any(bad in v.lower() for bad in ['<script>', 'DROP TABLE']):
raise ValueError('Invalid prompt content')
return v
```
### 4. Content Filtering Integration
```python
from safeguard_filters import ContentSafetyFilter, RefusalGenerator
safety_filter = ContentSafetyFilter()
refusal_gen = RefusalGenerator()
@app.post("/generate")
async def generate(request: GenerationRequest):
# Check input safety
is_safe, violations = safety_filter.check_input(request.prompt)
if not is_safe:
return {"error": refusal_gen.generate_refusal(violations[0])}
# Generate response
outputs = model.generate(...)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Check output safety
is_safe, violations = safety_filter.check_output(response)
if not is_safe:
response = safety_filter.redact_pii(response)
return {"response": response}
```
---
## Troubleshooting
### Common Issues and Solutions
#### Issue 1: Out of Memory (OOM)
**Symptoms**: CUDA out of memory error
**Solutions**:
```python
# Solution 1: Use quantization
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit=True, # or load_in_4bit=True
device_map="auto"
)
# Solution 2: Reduce batch size
# Use batch_size=1 for inference
# Solution 3: Reduce context length
outputs = model.generate(**inputs, max_new_tokens=256) # Instead of 512
# Solution 4: Clear cache
torch.cuda.empty_cache()
```
#### Issue 2: Slow Inference
**Symptoms**: High latency, low throughput
**Solutions**:
```python
# Solution 1: Enable Flash Attention
model = AutoModelForCausalLM.from_pretrained(
model_id,
attn_implementation="flash_attention_2"
)
# Solution 2: Use compilation
model = torch.compile(model)
# Solution 3: Use vLLM
# Install: pip install vllm
# Run with vLLM server (much faster)
# Solution 4: Batch requests
# Process multiple requests together
```
#### Issue 3: Model Not Loading
**Symptoms**: Download errors, corruption
**Solutions**:
```bash
# Clear cache
rm -rf ~/.cache/huggingface/
# Download manually
huggingface-cli download DeepXR/Helion-V1.5-XL
# Check disk space
df -h
# Verify CUDA installation
nvidia-smi
```
#### Issue 4: Quality Degradation with Quantization
**Solutions**:
- Use INT8 instead of INT4
- Calibrate quantization with representative data
- Use double quantization: `bnb_4bit_use_double_quant=True`
### Debugging Commands
```bash
# Check GPU status
nvidia-smi
# Monitor GPU usage
watch -n 1 nvidia-smi
# Check Python packages
pip list | grep -E "torch|transformers"
# Test CUDA
python -c "import torch; print(torch.cuda.is_available())"
# Memory profiling
python -m memory_profiler your_script.py
# Performance profiling
python -m cProfile -o output.prof your_script.py
```
---
## Production Checklist
### Pre-Deployment
- [ ] Hardware requirements verified
- [ ] Dependencies installed and tested
- [ ] Model downloaded and loaded successfully
- [ ] Inference tested with sample prompts
- [ ] Performance benchmarks meet requirements
- [ ] Memory usage within acceptable limits
- [ ] Safety filters configured and tested
- [ ] API authentication implemented
- [ ] Rate limiting configured
- [ ] Input validation in place
- [ ] Error handling implemented
- [ ] Logging configured
- [ ] Monitoring dashboards set up
- [ ] Health check endpoints working
- [ ] Load testing completed
- [ ] Security audit passed
- [ ] Documentation complete
### Post-Deployment
- [ ] Monitor error rates
- [ ] Track latency metrics
- [ ] Monitor GPU utilization
- [ ] Check memory usage trends
- [ ] Review safety violation logs
- [ ] Analyze user feedback
- [ ] Update model if needed
- [ ] Scale based on load
- [ ] Regular security updates
- [ ] Backup configurations
- [ ] Disaster recovery tested
- [ ] Performance optimization ongoing
### Maintenance Schedule
| Task | Frequency | Responsibility |
|------|-----------|----------------|
| Check error logs | Daily | DevOps |
| Review performance metrics | Daily | ML Engineers |
| Security updates | Weekly | Security Team |
| Model evaluation | Monthly | Data Science |
| Capacity planning | Monthly | Infrastructure |
| Disaster recovery drill | Quarterly | All Teams |
| Full system audit | Annually | External Auditor |
---
## Additional Resources
### Documentation
- [Transformers Documentation](https://huggingface.co/docs/transformers)
- [PyTorch Documentation](https://pytorch.org/docs)
- [CUDA Programming Guide](https://docs.nvidia.com/cuda/)
### Support Channels
- GitHub Issues: For bug reports and feature requests
- Community Forum: For general questions and discussions
- Enterprise Support: For production deployments
### Example Projects
- REST API Server: `/examples/rest_api`
- Streaming Interface: `/examples/streaming`
- Batch Processing: `/examples/batch_processing`
- Fine-tuning: `/examples/fine_tuning`
---
## Version History
| Version | Date | Changes |
|---------|------|---------|
| 1.0.0 | 2024-11-01 | Initial release |
| 1.0.1 | 2024-11-15 | Performance optimizations |
| 1.1.0 | 2024-12-01 | Flash Attention 2 support |
---
**Last Updated**: 2024-11-10
**Maintained By**: DeepXR Engineering Team |