File size: 10,236 Bytes
9426882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
Helion-V1.5-XL Usage Examples
Demonstrates various use cases and configurations
"""

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

# Initialize model and tokenizer
MODEL_NAME = "DeepXR/Helion-V1.5-XL"

def load_model(quantization="none"):
    """Load model with optional quantization"""
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    
    if quantization == "4bit":
        from transformers import BitsAndBytesConfig
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4"
        )
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_NAME,
            quantization_config=quantization_config,
            device_map="auto",
            trust_remote_code=True
        )
    else:
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_NAME,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            trust_remote_code=True
        )
    
    return model, tokenizer


# Example 1: Simple Text Generation
def example_simple_generation():
    """Basic text generation example"""
    print("\n" + "="*80)
    print("EXAMPLE 1: Simple Text Generation")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = "Explain the concept of neural networks in simple terms:"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=256,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\nPrompt: {prompt}")
    print(f"\nResponse: {response[len(prompt):]}")


# Example 2: Chat Conversation
def example_chat_conversation():
    """Multi-turn conversation example"""
    print("\n" + "="*80)
    print("EXAMPLE 2: Chat Conversation")
    print("="*80)
    
    model, tokenizer = load_model()
    
    conversation = [
        {"role": "system", "content": "You are a helpful AI assistant."},
        {"role": "user", "content": "What are the main benefits of renewable energy?"},
    ]
    
    prompt = tokenizer.apply_chat_template(
        conversation,
        tokenize=False,
        add_generation_prompt=True
    )
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.7)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\nConversation:\n{response}")


# Example 3: Code Generation
def example_code_generation():
    """Code generation example"""
    print("\n" + "="*80)
    print("EXAMPLE 3: Code Generation")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = """Write a Python function that finds the longest palindromic substring:

def longest_palindrome(s: str) -> str:"""
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.2,  # Lower temperature for code
        top_p=0.95,
        do_sample=True
    )
    
    code = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\nGenerated Code:\n{code}")


# Example 4: Structured Output (JSON)
def example_structured_output():
    """Generate structured JSON output"""
    print("\n" + "="*80)
    print("EXAMPLE 4: Structured JSON Output")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = """Generate a JSON object describing a fictional book:
{
  "title": "The Last Algorithm",
  "author": """
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=256,
        temperature=0.4,
        top_p=0.9
    )
    
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\nGenerated JSON:\n{result}")


# Example 5: Batch Processing
def example_batch_processing():
    """Process multiple prompts in batch"""
    print("\n" + "="*80)
    print("EXAMPLE 5: Batch Processing")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompts = [
        "List three benefits of exercise:",
        "What is quantum computing?",
        "Explain photosynthesis briefly:"
    ]
    
    inputs = tokenizer(
        prompts,
        return_tensors="pt",
        padding=True,
        truncation=True
    ).to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=128,
        temperature=0.7,
        do_sample=True
    )
    
    for i, output in enumerate(outputs):
        response = tokenizer.decode(output, skip_special_tokens=True)
        print(f"\nPrompt {i+1}: {prompts[i]}")
        print(f"Response: {response[len(prompts[i]):]}\n")


# Example 6: Creative Writing
def example_creative_writing():
    """Creative writing with higher temperature"""
    print("\n" + "="*80)
    print("EXAMPLE 6: Creative Writing")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = "Write the opening paragraph of a science fiction story:"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.9,  # Higher for creativity
        top_p=0.95,
        top_k=100,
        repetition_penalty=1.15,
        do_sample=True
    )
    
    story = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\n{story}")


# Example 7: Using Pipeline API
def example_pipeline_api():
    """Use the transformers pipeline API"""
    print("\n" + "="*80)
    print("EXAMPLE 7: Pipeline API")
    print("="*80)
    
    generator = pipeline(
        "text-generation",
        model=MODEL_NAME,
        torch_dtype=torch.bfloat16,
        device_map="auto"
    )
    
    results = generator(
        "The future of artificial intelligence is",
        max_new_tokens=200,
        temperature=0.7,
        top_p=0.9,
        num_return_sequences=1
    )
    
    print(f"\nGenerated text:\n{results[0]['generated_text']}")


# Example 8: Streaming Generation
def example_streaming_generation():
    """Generate text with streaming (token by token)"""
    print("\n" + "="*80)
    print("EXAMPLE 8: Streaming Generation")
    print("="*80)
    
    from transformers import TextIteratorStreamer
    from threading import Thread
    
    model, tokenizer = load_model()
    
    prompt = "Explain machine learning in three sentences:"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    
    generation_kwargs = dict(
        **inputs,
        max_new_tokens=256,
        temperature=0.7,
        streamer=streamer
    )
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    print(f"\nPrompt: {prompt}\n\nResponse (streaming): ", end="")
    for new_text in streamer:
        print(new_text, end="", flush=True)
    
    print("\n")
    thread.join()


# Example 9: Few-Shot Learning
def example_few_shot():
    """Few-shot learning example"""
    print("\n" + "="*80)
    print("EXAMPLE 9: Few-Shot Learning")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = """Translate English to French:

English: Hello, how are you?
French: Bonjour, comment allez-vous?

English: What is your name?
French: Comment vous appelez-vous?

English: I love programming.
French:"""
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=50, temperature=0.3)
    
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"\n{result}")


# Example 10: Custom Generation Parameters
def example_custom_parameters():
    """Advanced generation parameter tuning"""
    print("\n" + "="*80)
    print("EXAMPLE 10: Custom Generation Parameters")
    print("="*80)
    
    model, tokenizer = load_model()
    
    prompt = "Write a haiku about technology:"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Multiple generations with different parameters
    configs = [
        {"name": "Conservative", "temperature": 0.3, "top_p": 0.9, "top_k": 30},
        {"name": "Balanced", "temperature": 0.7, "top_p": 0.9, "top_k": 50},
        {"name": "Creative", "temperature": 1.0, "top_p": 0.95, "top_k": 100},
    ]
    
    for config in configs:
        outputs = model.generate(
            **inputs,
            max_new_tokens=128,
            temperature=config["temperature"],
            top_p=config["top_p"],
            top_k=config["top_k"],
            do_sample=True
        )
        
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(f"\n{config['name']} (temp={config['temperature']}):")
        print(result[len(prompt):])


def main():
    """Run all examples"""
    print("\n" + "="*80)
    print("HELION-V1.5-XL USAGE EXAMPLES")
    print("="*80)
    
    examples = [
        ("Simple Generation", example_simple_generation),
        ("Chat Conversation", example_chat_conversation),
        ("Code Generation", example_code_generation),
        ("Structured Output", example_structured_output),
        ("Batch Processing", example_batch_processing),
        ("Creative Writing", example_creative_writing),
        ("Pipeline API", example_pipeline_api),
        ("Streaming Generation", example_streaming_generation),
        ("Few-Shot Learning", example_few_shot),
        ("Custom Parameters", example_custom_parameters),
    ]
    
    print("\nAvailable examples:")
    for i, (name, _) in enumerate(examples, 1):
        print(f"  {i}. {name}")
    
    print("\nRun individual examples or all examples.")
    print("Example: python example_usage.py")
    
    # Uncomment to run specific examples
    # example_simple_generation()
    # example_chat_conversation()
    # example_code_generation()
    

if __name__ == "__main__":
    main()