File size: 6,413 Bytes
a95fb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c164aca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Helion-V2.0-Thinking Quickstart Guide

Get started with Helion-V2.0-Thinking in minutes.

## Installation

### Basic Installation

```bash
pip install transformers torch accelerate pillow requests
```

### Full Installation (with all features)

```bash
pip install -r requirements.txt
```

### GPU Requirements

- **Minimum**: 24GB VRAM (RTX 4090, A5000)
- **Recommended**: 40GB+ VRAM (A100, H100)
- **Quantized (8-bit)**: 16GB VRAM
- **Quantized (4-bit)**: 12GB VRAM

## Quick Examples

### 1. Basic Text Generation

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "DeepXR/Helion-V2.0-Thinking"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

prompt = "What is artificial intelligence?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### 2. Image Understanding

```python
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image

processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

image = Image.open("photo.jpg")
prompt = "What is in this image?"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(outputs[0], skip_special_tokens=True))
```

### 3. Using the Inference Script

```bash
# Interactive chat mode
python inference.py --interactive

# With image analysis
python inference.py --image photo.jpg --prompt "Describe this image"

# Run demos
python inference.py --demo

# With quantization (saves memory)
python inference.py --interactive --load-in-4bit
```

### 4. With Safety Wrapper

```python
from safety_wrapper import SafeHelionWrapper

# Initialize with safety features
wrapper = SafeHelionWrapper(
    model_name="DeepXR/Helion-V2.0-Thinking",
    enable_safety=True,
    enable_rate_limiting=True
)

# Safe generation
response = wrapper.generate(
    prompt="Explain photosynthesis",
    max_new_tokens=256
)
print(response)
```

### 5. Function Calling

```python
import json

tools = [{
    "name": "calculator",
    "description": "Perform calculations",
    "parameters": {
        "type": "object",
        "properties": {
            "expression": {"type": "string"}
        }
    }
}]

prompt = f"""Available tools: {json.dumps(tools)}

User: What is 125 * 48?
Assistant (respond with JSON):"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.2)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Memory-Efficient Options

### 8-bit Quantization

```python
from transformers import BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map="auto"
)
```

### 4-bit Quantization

```python
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map="auto"
)
```

## Running Benchmarks

```bash
# Full benchmark suite
python benchmark.py --model DeepXR/Helion-V2.0-Thinking

# Evaluation suite
python evaluate.py --model DeepXR/Helion-V2.0-Thinking
```

## Common Use Cases

### Chatbot

```python
conversation = []

while True:
    user_input = input("You: ")
    if user_input.lower() == 'quit':
        break
    
    conversation.append({"role": "user", "content": user_input})
    
    prompt = "\n".join([
        f"{msg['role'].capitalize()}: {msg['content']}" 
        for msg in conversation
    ]) + "\nAssistant:"
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=512)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = response.split("Assistant:")[-1].strip()
    
    conversation.append({"role": "assistant", "content": response})
    print(f"Assistant: {response}")
```

### Document Analysis

```python
# Read long document
with open("document.txt", "r") as f:
    document = f.read()

prompt = f"""{document}

Please provide:
1. A summary of the main points
2. Key takeaways
3. Any recommendations

Summary:"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1024)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Code Generation

```python
prompt = """Write a Python function that:
1. Takes a list of numbers
2. Removes duplicates
3. Returns sorted in descending order

Include type hints and docstring."""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    temperature=0.3  # Lower temperature for code
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Troubleshooting

### Out of Memory

1. Use quantization (4-bit or 8-bit)
2. Reduce `max_new_tokens`
3. Enable gradient checkpointing
4. Use smaller batch sizes

### Slow Performance

1. Enable Flash Attention 2: `use_flash_attention_2=True`
2. Use GPU if available
3. Reduce context length
4. Use quantization

### Installation Issues

```bash
# Update pip
pip install --upgrade pip

# Install from scratch
pip uninstall transformers torch
pip install transformers torch accelerate

# CUDA issues
pip install torch --index-url https://download.pytorch.org/whl/cu121
```

## Next Steps

- Read the full [README.md](README.md) for detailed documentation
- Check out [inference.py](inference.py) for more examples
- Review [safety_wrapper.py](safety_wrapper.py) for safety features
- Run [benchmark.py](benchmark.py) to test performance
- See [evaluate.py](evaluate.py) for quality metrics

## Support

For issues and questions:
- Check the Hugging Face model page
- Review existing issues
- Submit a new issue with details

## License

Apache 2.0 - See LICENSE file for details.