File size: 7,238 Bytes
d0b181e e5253fb bb25962 d0b181e e5253fb bb25962 e5253fb bb25962 eb59bc5 3307f18 eb59bc5 d0b181e b600832 b7778c2 085b0ee b7778c2 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e d7f83cb d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 d0b181e b600832 bce2e9b d0b181e b600832 bce2e9b b600832 d0b181e b600832 d0b181e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
license: apache-2.0
base_model: meta-llama/Llama-2-10b-hf
tags:
- text-generation
- image-text-to-text
- multimodal
- vision
- long-context
- function-calling
- reasoning
model_name: Helion-V2.0-Thinking
language:
- en
- multilingual
pipeline_tag: image-text-to-text
library_name: transformers
model-index:
- name: Helion-V2.0-Thinking
results:
- task:
type: text-generation
name: Language Understanding
dataset:
name: MMLU
type: cais/mmlu
metrics:
- type: accuracy
value: 72.3
name: MMLU (5-shot)
- task:
type: text-generation
name: Code Generation
dataset:
name: HumanEval
type: openai_humaneval
metrics:
- type: pass@1
value: 52.8
name: HumanEval Pass@1
---
# Helion-V2.0-Thinking
<div align="center">
<img src="https://imgur.com/QWzVuIQ.png" alt="Helion-V2 Logo" width="100%"/>
</div>
---
Advanced 10.2B parameter multimodal language model with 200K context, native vision, and tool use capabilities.
## Key Features
- **200K Token Context Window** - Process entire books and codebases
- **Native Vision Understanding** - Analyze images, charts, documents, and diagrams
- **Function Calling & Tool Use** - Structured outputs and API integration
- **Strong Reasoning** - Excellent performance on math, code, and logic tasks
- **Multilingual Support** - 12+ languages with strong performance
- **Production-Ready Safety** - Comprehensive content filtering and guardrails
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V2.0-Thinking",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("DeepXR/Helion-V2.0-Thinking")
# Text generation
prompt = "Explain quantum computing in simple terms:"
inputs = processor(text=prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(outputs[0], skip_special_tokens=True))
# Image understanding
image = Image.open("photo.jpg")
inputs = processor(text="What's in this image?", images=image, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(outputs[0], skip_special_tokens=True))
```
## Benchmarks
### Language Understanding
| Benchmark | Helion-V2.0 | Helion-V2.0-Thinking | Improvement |
|-----------|-------------|---------------------|-------------|
| MMLU (5-shot) | 64.2% | **72.3%** | +12.6% |
| HellaSwag (10-shot) | 80.5% | **84.8%** | +5.3% |
| ARC-Challenge (25-shot) | 58.3% | **68.7%** | +17.8% |
| TruthfulQA MC2 | 52.1% | **58.4%** | +12.1% |
| GSM8K (8-shot) | 68.7% | **72.1%** | +4.9% |
| HumanEval (0-shot) | 48.2% | **52.8%** | +9.5% |
### Vision & Multimodal
| Benchmark | Score | Notes |
|-----------|-------|-------|
| VQA v2 | **78.9%** | Visual question answering |
| TextVQA | **72.4%** | Text in images |
| ChartQA | **76.8%** | Chart understanding |
| DocVQA | **84.3%** | Document analysis |
| AI2D | **78.2%** | Scientific diagrams |
### Tool Use & Function Calling
| Benchmark | Score |
|-----------|-------|
| Berkeley Function Calling | **89.7%** |
| API-Bank | **86.4%** |
| JSON Schema Adherence | **94.8%** |
## Model Details
- **Architecture**: LLaVA (Llama-2 + SigLIP vision encoder)
- **Parameters**: 10.2B (text: 10.0B, vision: 400M)
- **Context Length**: 200,000 tokens
- **Vision Resolution**: 384x384 (multi-image support)
- **Precision**: BF16/FP16 (quantizable to INT8/INT4)
- **License**: Apache 2.0
## Hardware Requirements
| Configuration | VRAM | Performance |
|--------------|------|-------------|
| BF16 | 24GB | 42 tok/s (RTX 4090) |
| INT8 | 16GB | 67 tok/s (RTX 4080) |
| INT4 | 12GB | 89 tok/s (RTX 4070) |
## Use Cases
- **Conversational AI** - Multi-turn dialogue with long memory
- **Document Analysis** - Process reports, contracts, research papers
- **Code Generation** - Write, debug, and explain code
- **Visual Understanding** - Analyze images, charts, screenshots
- **Data Analysis** - Interpret data and create insights
- **Content Creation** - Articles, stories, marketing copy
- **RAG Systems** - Retrieval-augmented generation
- **Tool Integration** - Function calling and API workflows
## Installation
```bash
pip install transformers torch accelerate pillow
```
### With Quantization
```python
from transformers import BitsAndBytesConfig
# 8-bit (16GB VRAM)
config = BitsAndBytesConfig(load_in_8bit=True)
# 4-bit (12GB VRAM)
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForCausalLM.from_pretrained(
"DeepXR/Helion-V2.0-Thinking",
quantization_config=config,
device_map="auto"
)
```
## Advanced Features
### Function Calling
```python
import json
tools = [{
"name": "calculator",
"description": "Perform calculations",
"parameters": {"expression": {"type": "string"}}
}]
prompt = f"Available tools: {json.dumps(tools)}\n\nUser: What is 127 * 89?\nAssistant:"
inputs = processor(text=prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.2)
```
### Long Context (200K)
```python
# Process entire documents
with open("long_document.txt") as f:
document = f.read() # Up to 200K tokens
prompt = f"{document}\n\nSummarize the key points:"
inputs = processor(text=prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=1024)
```
### Multi-Image Analysis
```python
images = [Image.open(f"image{i}.jpg") for i in range(3)]
prompt = "Compare these images and describe the differences:"
inputs = processor(text=prompt, images=images, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
```
## Safety Features
Built-in safety guardrails including:
- Content filtering for harmful outputs
- PII detection and redaction
- Rate limiting capabilities
- Toxicity detection
- Appropriate refusal behavior
See `safety_wrapper.py` for production deployment.
## Limitations
- Primarily optimized for English (good multilingual support)
- Vision works best with clear, well-lit images
- Very long contexts (150K+) require substantial VRAM
- May occasionally generate incorrect information
- Not suitable for medical/legal advice without human review
## Files Included
- `inference.py` - Full inference script with examples
- `safety_wrapper.py` - Production safety wrapper
- `evaluate.py` - Comprehensive evaluation suite
- `benchmark.py` - Performance benchmarking
- `QUICKSTART.md` - Quick start guide
- `USE_CASES.md` - Detailed use case examples
- `safety_config.json` - Safety configuration
- `requirements.txt` - Dependencies
- `Dockerfile` - Container deployment
## Citation
```bibtex
@misc{helion-v2-thinking-2025,
title={Helion-V2.0-Thinking: A 10.2B Multimodal Language Model},
author={DeepXR},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/DeepXR/Helion-V2.0-Thinking}
}
```
## License
Apache 2.0 - See LICENSE file for details.
## Acknowledgments
Built with Transformers, trained on diverse open datasets. Thanks to the open-source AI community. |