Create inference.py
Browse files- inference.py +553 -0
inference.py
ADDED
|
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helion-V2.0-Thinking Inference Script
|
| 3 |
+
A comprehensive example showing different ways to use the multimodal model
|
| 4 |
+
with vision, tool use, and structured output capabilities
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import (
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
AutoProcessor,
|
| 12 |
+
BitsAndBytesConfig
|
| 13 |
+
)
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import requests
|
| 16 |
+
from typing import Optional, List, Dict, Any
|
| 17 |
+
import argparse
|
| 18 |
+
import json
|
| 19 |
+
import re
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class HelionInference:
|
| 23 |
+
"""Wrapper class for Helion-V2.0-Thinking multimodal model inference"""
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
model_name: str = "DeepXR/Helion-V2.0-Thinking",
|
| 28 |
+
device: str = "auto",
|
| 29 |
+
load_in_8bit: bool = False,
|
| 30 |
+
load_in_4bit: bool = False,
|
| 31 |
+
use_flash_attention: bool = True
|
| 32 |
+
):
|
| 33 |
+
"""
|
| 34 |
+
Initialize the model, tokenizer, and processor
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
model_name: HuggingFace model identifier
|
| 38 |
+
device: Device to load model on ('auto', 'cuda', 'cpu')
|
| 39 |
+
load_in_8bit: Enable 8-bit quantization
|
| 40 |
+
load_in_4bit: Enable 4-bit quantization
|
| 41 |
+
use_flash_attention: Use Flash Attention 2 for efficiency
|
| 42 |
+
"""
|
| 43 |
+
print(f"Loading {model_name}...")
|
| 44 |
+
|
| 45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 47 |
+
|
| 48 |
+
# Configure quantization if requested
|
| 49 |
+
quantization_config = None
|
| 50 |
+
if load_in_4bit:
|
| 51 |
+
quantization_config = BitsAndBytesConfig(
|
| 52 |
+
load_in_4bit=True,
|
| 53 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 54 |
+
bnb_4bit_use_double_quant=True,
|
| 55 |
+
bnb_4bit_quant_type="nf4"
|
| 56 |
+
)
|
| 57 |
+
elif load_in_8bit:
|
| 58 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 59 |
+
|
| 60 |
+
# Load model
|
| 61 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
model_name,
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
device_map=device,
|
| 65 |
+
quantization_config=quantization_config,
|
| 66 |
+
use_flash_attention_2=use_flash_attention,
|
| 67 |
+
trust_remote_code=True
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.model.eval()
|
| 71 |
+
print("Model loaded successfully!")
|
| 72 |
+
|
| 73 |
+
# Tool definitions
|
| 74 |
+
self.tools = self._initialize_tools()
|
| 75 |
+
|
| 76 |
+
def _initialize_tools(self) -> List[Dict[str, Any]]:
|
| 77 |
+
"""Initialize available tools for function calling"""
|
| 78 |
+
return [
|
| 79 |
+
{
|
| 80 |
+
"name": "calculator",
|
| 81 |
+
"description": "Perform mathematical calculations",
|
| 82 |
+
"parameters": {
|
| 83 |
+
"type": "object",
|
| 84 |
+
"properties": {
|
| 85 |
+
"expression": {
|
| 86 |
+
"type": "string",
|
| 87 |
+
"description": "Mathematical expression to evaluate"
|
| 88 |
+
}
|
| 89 |
+
},
|
| 90 |
+
"required": ["expression"]
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"name": "web_search",
|
| 95 |
+
"description": "Search the web for current information",
|
| 96 |
+
"parameters": {
|
| 97 |
+
"type": "object",
|
| 98 |
+
"properties": {
|
| 99 |
+
"query": {
|
| 100 |
+
"type": "string",
|
| 101 |
+
"description": "The search query"
|
| 102 |
+
}
|
| 103 |
+
},
|
| 104 |
+
"required": ["query"]
|
| 105 |
+
}
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"name": "code_executor",
|
| 109 |
+
"description": "Execute Python code safely",
|
| 110 |
+
"parameters": {
|
| 111 |
+
"type": "object",
|
| 112 |
+
"properties": {
|
| 113 |
+
"code": {
|
| 114 |
+
"type": "string",
|
| 115 |
+
"description": "Python code to execute"
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"required": ["code"]
|
| 119 |
+
}
|
| 120 |
+
}
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
def generate(
|
| 124 |
+
self,
|
| 125 |
+
prompt: str,
|
| 126 |
+
max_new_tokens: int = 512,
|
| 127 |
+
temperature: float = 0.7,
|
| 128 |
+
top_p: float = 0.9,
|
| 129 |
+
top_k: int = 50,
|
| 130 |
+
repetition_penalty: float = 1.1,
|
| 131 |
+
do_sample: bool = True,
|
| 132 |
+
images: Optional[List[Image.Image]] = None
|
| 133 |
+
) -> str:
|
| 134 |
+
"""
|
| 135 |
+
Generate text from a prompt with optional images
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
prompt: Input text
|
| 139 |
+
max_new_tokens: Maximum tokens to generate
|
| 140 |
+
temperature: Sampling temperature
|
| 141 |
+
top_p: Nucleus sampling threshold
|
| 142 |
+
top_k: Top-k sampling parameter
|
| 143 |
+
repetition_penalty: Penalty for repeating tokens
|
| 144 |
+
do_sample: Use sampling vs greedy decoding
|
| 145 |
+
images: Optional list of PIL images
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
Generated text
|
| 149 |
+
"""
|
| 150 |
+
if images:
|
| 151 |
+
inputs = self.processor(
|
| 152 |
+
text=prompt,
|
| 153 |
+
images=images,
|
| 154 |
+
return_tensors="pt"
|
| 155 |
+
).to(self.model.device)
|
| 156 |
+
else:
|
| 157 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 158 |
+
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
outputs = self.model.generate(
|
| 161 |
+
**inputs,
|
| 162 |
+
max_new_tokens=max_new_tokens,
|
| 163 |
+
temperature=temperature,
|
| 164 |
+
top_p=top_p,
|
| 165 |
+
top_k=top_k,
|
| 166 |
+
repetition_penalty=repetition_penalty,
|
| 167 |
+
do_sample=do_sample,
|
| 168 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Decode and return
|
| 172 |
+
if images:
|
| 173 |
+
generated_text = self.processor.decode(outputs[0], skip_special_tokens=True)
|
| 174 |
+
else:
|
| 175 |
+
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 176 |
+
|
| 177 |
+
# Remove the prompt from output
|
| 178 |
+
if generated_text.startswith(prompt):
|
| 179 |
+
generated_text = generated_text[len(prompt):].strip()
|
| 180 |
+
|
| 181 |
+
return generated_text
|
| 182 |
+
|
| 183 |
+
def analyze_image(
|
| 184 |
+
self,
|
| 185 |
+
image: Image.Image,
|
| 186 |
+
query: str = "Describe this image in detail.",
|
| 187 |
+
max_new_tokens: int = 512
|
| 188 |
+
) -> str:
|
| 189 |
+
"""
|
| 190 |
+
Analyze an image with a specific query
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
image: PIL Image object
|
| 194 |
+
query: Question or instruction about the image
|
| 195 |
+
max_new_tokens: Maximum tokens to generate
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Image analysis response
|
| 199 |
+
"""
|
| 200 |
+
return self.generate(
|
| 201 |
+
prompt=query,
|
| 202 |
+
images=[image],
|
| 203 |
+
max_new_tokens=max_new_tokens,
|
| 204 |
+
temperature=0.7
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
def extract_text_from_image(
|
| 208 |
+
self,
|
| 209 |
+
image: Image.Image
|
| 210 |
+
) -> str:
|
| 211 |
+
"""
|
| 212 |
+
Perform OCR on an image
|
| 213 |
+
|
| 214 |
+
Args:
|
| 215 |
+
image: PIL Image object
|
| 216 |
+
|
| 217 |
+
Returns:
|
| 218 |
+
Extracted text
|
| 219 |
+
"""
|
| 220 |
+
prompt = "Extract all text from this image. Return only the text content without any additional commentary."
|
| 221 |
+
return self.generate(
|
| 222 |
+
prompt=prompt,
|
| 223 |
+
images=[image],
|
| 224 |
+
max_new_tokens=1024,
|
| 225 |
+
temperature=0.3
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
def call_function(
|
| 229 |
+
self,
|
| 230 |
+
prompt: str,
|
| 231 |
+
tools: Optional[List[Dict[str, Any]]] = None
|
| 232 |
+
) -> Dict[str, Any]:
|
| 233 |
+
"""
|
| 234 |
+
Use function calling to determine which tool to use
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
prompt: User query
|
| 238 |
+
tools: List of available tools (uses default if None)
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
Dict with tool name and parameters
|
| 242 |
+
"""
|
| 243 |
+
if tools is None:
|
| 244 |
+
tools = self.tools
|
| 245 |
+
|
| 246 |
+
system_prompt = f"""You are a helpful assistant with access to the following tools:
|
| 247 |
+
{json.dumps(tools, indent=2)}
|
| 248 |
+
|
| 249 |
+
To use a tool, respond with ONLY a JSON object in this exact format:
|
| 250 |
+
{{"tool": "tool_name", "parameters": {{"param": "value"}}}}
|
| 251 |
+
|
| 252 |
+
Do not include any other text or explanation."""
|
| 253 |
+
|
| 254 |
+
full_prompt = f"{system_prompt}\n\nUser query: {prompt}\n\nTool call:"
|
| 255 |
+
|
| 256 |
+
response = self.generate(
|
| 257 |
+
prompt=full_prompt,
|
| 258 |
+
max_new_tokens=256,
|
| 259 |
+
temperature=0.2,
|
| 260 |
+
do_sample=False
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Parse JSON response
|
| 264 |
+
try:
|
| 265 |
+
# Extract JSON from response
|
| 266 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 267 |
+
if json_match:
|
| 268 |
+
tool_call = json.loads(json_match.group())
|
| 269 |
+
return tool_call
|
| 270 |
+
else:
|
| 271 |
+
return {"error": "No valid JSON found in response", "raw": response}
|
| 272 |
+
except json.JSONDecodeError as e:
|
| 273 |
+
return {"error": f"JSON decode error: {str(e)}", "raw": response}
|
| 274 |
+
|
| 275 |
+
def structured_output(
|
| 276 |
+
self,
|
| 277 |
+
prompt: str,
|
| 278 |
+
schema: Dict[str, Any]
|
| 279 |
+
) -> Dict[str, Any]:
|
| 280 |
+
"""
|
| 281 |
+
Generate structured JSON output matching a schema
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
prompt: Input prompt
|
| 285 |
+
schema: JSON schema for the output
|
| 286 |
+
|
| 287 |
+
Returns:
|
| 288 |
+
Parsed JSON response
|
| 289 |
+
"""
|
| 290 |
+
full_prompt = f"""Generate a JSON response matching this schema:
|
| 291 |
+
{json.dumps(schema, indent=2)}
|
| 292 |
+
|
| 293 |
+
User request: {prompt}
|
| 294 |
+
|
| 295 |
+
Return ONLY valid JSON, no other text:"""
|
| 296 |
+
|
| 297 |
+
response = self.generate(
|
| 298 |
+
prompt=full_prompt,
|
| 299 |
+
max_new_tokens=1024,
|
| 300 |
+
temperature=0.2,
|
| 301 |
+
do_sample=False
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Parse JSON response
|
| 305 |
+
try:
|
| 306 |
+
# Try to extract JSON from markdown code blocks
|
| 307 |
+
if "```json" in response:
|
| 308 |
+
json_str = response.split("```json")[-1].split("```")[0].strip()
|
| 309 |
+
elif "```" in response:
|
| 310 |
+
json_str = response.split("```")[1].strip()
|
| 311 |
+
else:
|
| 312 |
+
json_str = response.strip()
|
| 313 |
+
|
| 314 |
+
return json.loads(json_str)
|
| 315 |
+
except json.JSONDecodeError as e:
|
| 316 |
+
return {"error": f"JSON decode error: {str(e)}", "raw": response}
|
| 317 |
+
|
| 318 |
+
def chat(
|
| 319 |
+
self,
|
| 320 |
+
messages: List[Dict[str, Any]],
|
| 321 |
+
max_new_tokens: int = 512,
|
| 322 |
+
temperature: float = 0.7,
|
| 323 |
+
top_p: float = 0.9
|
| 324 |
+
) -> str:
|
| 325 |
+
"""
|
| 326 |
+
Chat interface using conversation format with support for images
|
| 327 |
+
|
| 328 |
+
Args:
|
| 329 |
+
messages: List of message dicts with 'role', 'content', and optional 'images' keys
|
| 330 |
+
max_new_tokens: Maximum tokens to generate
|
| 331 |
+
temperature: Sampling temperature
|
| 332 |
+
top_p: Nucleus sampling threshold
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
Assistant's response
|
| 336 |
+
"""
|
| 337 |
+
# Extract images from messages
|
| 338 |
+
all_images = []
|
| 339 |
+
for msg in messages:
|
| 340 |
+
if "images" in msg and msg["images"]:
|
| 341 |
+
all_images.extend(msg["images"])
|
| 342 |
+
|
| 343 |
+
# Apply chat template
|
| 344 |
+
prompt = self.processor.apply_chat_template(
|
| 345 |
+
messages,
|
| 346 |
+
tokenize=False,
|
| 347 |
+
add_generation_prompt=True
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
return self.generate(
|
| 351 |
+
prompt=prompt,
|
| 352 |
+
max_new_tokens=max_new_tokens,
|
| 353 |
+
temperature=temperature,
|
| 354 |
+
top_p=top_p,
|
| 355 |
+
images=all_images if all_images else None
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
def interactive_chat(self):
|
| 359 |
+
"""Run an interactive chat session with multimodal support"""
|
| 360 |
+
print("\n" + "="*60)
|
| 361 |
+
print("Helion-V2.0-Thinking Interactive Chat")
|
| 362 |
+
print("Commands:")
|
| 363 |
+
print(" - Type 'exit' or 'quit' to end")
|
| 364 |
+
print(" - Type 'image <path>' to add an image")
|
| 365 |
+
print(" - Type 'clear' to reset conversation")
|
| 366 |
+
print("="*60 + "\n")
|
| 367 |
+
|
| 368 |
+
conversation_history = []
|
| 369 |
+
|
| 370 |
+
while True:
|
| 371 |
+
user_input = input("You: ").strip()
|
| 372 |
+
|
| 373 |
+
if user_input.lower() in ['exit', 'quit', 'q']:
|
| 374 |
+
print("Goodbye!")
|
| 375 |
+
break
|
| 376 |
+
|
| 377 |
+
if user_input.lower() == 'clear':
|
| 378 |
+
conversation_history = []
|
| 379 |
+
print("Conversation cleared.\n")
|
| 380 |
+
continue
|
| 381 |
+
|
| 382 |
+
if not user_input:
|
| 383 |
+
continue
|
| 384 |
+
|
| 385 |
+
# Check for image command
|
| 386 |
+
images = []
|
| 387 |
+
if user_input.lower().startswith('image '):
|
| 388 |
+
image_path = user_input[6:].strip()
|
| 389 |
+
try:
|
| 390 |
+
image = Image.open(image_path)
|
| 391 |
+
images.append(image)
|
| 392 |
+
print(f"Image loaded: {image_path}")
|
| 393 |
+
user_input = input("Your question about the image: ").strip()
|
| 394 |
+
except Exception as e:
|
| 395 |
+
print(f"Error loading image: {e}")
|
| 396 |
+
continue
|
| 397 |
+
|
| 398 |
+
# Add user message to history
|
| 399 |
+
message = {
|
| 400 |
+
"role": "user",
|
| 401 |
+
"content": user_input
|
| 402 |
+
}
|
| 403 |
+
if images:
|
| 404 |
+
message["images"] = images
|
| 405 |
+
|
| 406 |
+
conversation_history.append(message)
|
| 407 |
+
|
| 408 |
+
# Generate response
|
| 409 |
+
try:
|
| 410 |
+
response = self.chat(conversation_history)
|
| 411 |
+
|
| 412 |
+
# Add assistant response to history
|
| 413 |
+
conversation_history.append({
|
| 414 |
+
"role": "assistant",
|
| 415 |
+
"content": response
|
| 416 |
+
})
|
| 417 |
+
|
| 418 |
+
print(f"\nAssistant: {response}\n")
|
| 419 |
+
except Exception as e:
|
| 420 |
+
print(f"Error generating response: {e}\n")
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def main():
|
| 424 |
+
parser = argparse.ArgumentParser(
|
| 425 |
+
description="Helion-V2.0-Thinking Multimodal Inference"
|
| 426 |
+
)
|
| 427 |
+
parser.add_argument(
|
| 428 |
+
"--model",
|
| 429 |
+
type=str,
|
| 430 |
+
default="DeepXR/Helion-V2.0-Thinking",
|
| 431 |
+
help="Model name or path"
|
| 432 |
+
)
|
| 433 |
+
parser.add_argument(
|
| 434 |
+
"--prompt",
|
| 435 |
+
type=str,
|
| 436 |
+
help="Input prompt for generation"
|
| 437 |
+
)
|
| 438 |
+
parser.add_argument(
|
| 439 |
+
"--image",
|
| 440 |
+
type=str,
|
| 441 |
+
help="Path to image file"
|
| 442 |
+
)
|
| 443 |
+
parser.add_argument(
|
| 444 |
+
"--interactive",
|
| 445 |
+
action="store_true",
|
| 446 |
+
help="Start interactive chat mode"
|
| 447 |
+
)
|
| 448 |
+
parser.add_argument(
|
| 449 |
+
"--load-in-8bit",
|
| 450 |
+
action="store_true",
|
| 451 |
+
help="Load model in 8-bit precision"
|
| 452 |
+
)
|
| 453 |
+
parser.add_argument(
|
| 454 |
+
"--load-in-4bit",
|
| 455 |
+
action="store_true",
|
| 456 |
+
help="Load model in 4-bit precision"
|
| 457 |
+
)
|
| 458 |
+
parser.add_argument(
|
| 459 |
+
"--max-tokens",
|
| 460 |
+
type=int,
|
| 461 |
+
default=512,
|
| 462 |
+
help="Maximum tokens to generate"
|
| 463 |
+
)
|
| 464 |
+
parser.add_argument(
|
| 465 |
+
"--temperature",
|
| 466 |
+
type=float,
|
| 467 |
+
default=0.7,
|
| 468 |
+
help="Sampling temperature"
|
| 469 |
+
)
|
| 470 |
+
parser.add_argument(
|
| 471 |
+
"--demo",
|
| 472 |
+
action="store_true",
|
| 473 |
+
help="Run demonstration examples"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
args = parser.parse_args()
|
| 477 |
+
|
| 478 |
+
# Initialize model
|
| 479 |
+
model = HelionInference(
|
| 480 |
+
model_name=args.model,
|
| 481 |
+
load_in_8bit=args.load_in_8bit,
|
| 482 |
+
load_in_4bit=args.load_in_4bit
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
# Run interactive mode or examples
|
| 486 |
+
if args.interactive:
|
| 487 |
+
model.interactive_chat()
|
| 488 |
+
elif args.demo:
|
| 489 |
+
print("\n" + "="*60)
|
| 490 |
+
print("Running Demonstration Examples")
|
| 491 |
+
print("="*60 + "\n")
|
| 492 |
+
|
| 493 |
+
# Text generation example
|
| 494 |
+
print("1. Text Generation:")
|
| 495 |
+
print("-" * 40)
|
| 496 |
+
response = model.generate(
|
| 497 |
+
"Explain quantum entanglement in simple terms:",
|
| 498 |
+
max_new_tokens=256
|
| 499 |
+
)
|
| 500 |
+
print(f"Response: {response}\n")
|
| 501 |
+
|
| 502 |
+
# Function calling example
|
| 503 |
+
print("2. Function Calling:")
|
| 504 |
+
print("-" * 40)
|
| 505 |
+
tool_call = model.call_function(
|
| 506 |
+
"What is 45 multiplied by 23, plus 156?"
|
| 507 |
+
)
|
| 508 |
+
print(f"Tool call: {json.dumps(tool_call, indent=2)}\n")
|
| 509 |
+
|
| 510 |
+
# Structured output example
|
| 511 |
+
print("3. Structured Output:")
|
| 512 |
+
print("-" * 40)
|
| 513 |
+
schema = {
|
| 514 |
+
"type": "object",
|
| 515 |
+
"properties": {
|
| 516 |
+
"summary": {"type": "string"},
|
| 517 |
+
"sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]},
|
| 518 |
+
"key_points": {"type": "array", "items": {"type": "string"}}
|
| 519 |
+
}
|
| 520 |
+
}
|
| 521 |
+
structured = model.structured_output(
|
| 522 |
+
"Analyze this: The new product launch was highly successful.",
|
| 523 |
+
schema
|
| 524 |
+
)
|
| 525 |
+
print(f"Structured output: {json.dumps(structured, indent=2)}\n")
|
| 526 |
+
|
| 527 |
+
elif args.image:
|
| 528 |
+
# Image analysis
|
| 529 |
+
try:
|
| 530 |
+
image = Image.open(args.image)
|
| 531 |
+
prompt = args.prompt or "Describe this image in detail."
|
| 532 |
+
response = model.analyze_image(image, prompt, args.max_tokens)
|
| 533 |
+
print(f"\nImage: {args.image}")
|
| 534 |
+
print(f"Query: {prompt}")
|
| 535 |
+
print(f"Response: {response}\n")
|
| 536 |
+
except Exception as e:
|
| 537 |
+
print(f"Error processing image: {e}")
|
| 538 |
+
|
| 539 |
+
elif args.prompt:
|
| 540 |
+
response = model.generate(
|
| 541 |
+
prompt=args.prompt,
|
| 542 |
+
max_new_tokens=args.max_tokens,
|
| 543 |
+
temperature=args.temperature
|
| 544 |
+
)
|
| 545 |
+
print(f"\nPrompt: {args.prompt}")
|
| 546 |
+
print(f"Response: {response}\n")
|
| 547 |
+
else:
|
| 548 |
+
print("Please specify --interactive, --demo, --prompt, or --image")
|
| 549 |
+
print("Use --help for more information")
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
if __name__ == "__main__":
|
| 553 |
+
main()
|