Create advanced_inference.py
Browse files- advanced_inference.py +455 -0
advanced_inference.py
ADDED
|
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import (
|
| 3 |
+
AutoModelForCausalLM,
|
| 4 |
+
AutoProcessor,
|
| 5 |
+
BitsAndBytesConfig,
|
| 6 |
+
GenerationConfig
|
| 7 |
+
)
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import json
|
| 10 |
+
from typing import Optional, List, Dict, Any, Union
|
| 11 |
+
import time
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class InferenceMetrics:
|
| 21 |
+
latency_ms: float
|
| 22 |
+
tokens_generated: int
|
| 23 |
+
tokens_per_second: float
|
| 24 |
+
memory_used_gb: float
|
| 25 |
+
input_tokens: int
|
| 26 |
+
total_tokens: int
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class AdvancedHelionInference:
|
| 30 |
+
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
model_name: str = "DeepXR/Helion-V2.0-Thinking",
|
| 34 |
+
quantization: Optional[str] = None,
|
| 35 |
+
device: str = "auto",
|
| 36 |
+
use_flash_attention: bool = True,
|
| 37 |
+
torch_compile: bool = False,
|
| 38 |
+
optimization_mode: str = "balanced"
|
| 39 |
+
):
|
| 40 |
+
logger.info(f"Initializing Helion-V2.0-Thinking with {optimization_mode} mode")
|
| 41 |
+
|
| 42 |
+
self.model_name = model_name
|
| 43 |
+
self.optimization_mode = optimization_mode
|
| 44 |
+
self.metrics_history = []
|
| 45 |
+
|
| 46 |
+
quantization_config = self._get_quantization_config(quantization)
|
| 47 |
+
|
| 48 |
+
logger.info("Loading processor...")
|
| 49 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 50 |
+
|
| 51 |
+
logger.info("Loading model...")
|
| 52 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
+
model_name,
|
| 54 |
+
quantization_config=quantization_config,
|
| 55 |
+
device_map=device,
|
| 56 |
+
torch_dtype=torch.bfloat16 if quantization is None else None,
|
| 57 |
+
use_flash_attention_2=use_flash_attention,
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
low_cpu_mem_usage=True
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
if torch_compile and quantization is None:
|
| 63 |
+
logger.info("Compiling model with torch.compile...")
|
| 64 |
+
self.model = torch.compile(self.model, mode="reduce-overhead")
|
| 65 |
+
|
| 66 |
+
self.model.eval()
|
| 67 |
+
|
| 68 |
+
self.generation_configs = {
|
| 69 |
+
"creative": GenerationConfig(
|
| 70 |
+
do_sample=True,
|
| 71 |
+
temperature=0.9,
|
| 72 |
+
top_p=0.95,
|
| 73 |
+
top_k=50,
|
| 74 |
+
repetition_penalty=1.15,
|
| 75 |
+
max_new_tokens=2048
|
| 76 |
+
),
|
| 77 |
+
"precise": GenerationConfig(
|
| 78 |
+
do_sample=True,
|
| 79 |
+
temperature=0.3,
|
| 80 |
+
top_p=0.85,
|
| 81 |
+
top_k=40,
|
| 82 |
+
repetition_penalty=1.05,
|
| 83 |
+
max_new_tokens=1024
|
| 84 |
+
),
|
| 85 |
+
"balanced": GenerationConfig(
|
| 86 |
+
do_sample=True,
|
| 87 |
+
temperature=0.7,
|
| 88 |
+
top_p=0.9,
|
| 89 |
+
top_k=50,
|
| 90 |
+
repetition_penalty=1.1,
|
| 91 |
+
max_new_tokens=1024
|
| 92 |
+
),
|
| 93 |
+
"code": GenerationConfig(
|
| 94 |
+
do_sample=True,
|
| 95 |
+
temperature=0.2,
|
| 96 |
+
top_p=0.9,
|
| 97 |
+
top_k=40,
|
| 98 |
+
repetition_penalty=1.05,
|
| 99 |
+
max_new_tokens=2048
|
| 100 |
+
)
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
logger.info("Model loaded successfully!")
|
| 104 |
+
|
| 105 |
+
def _get_quantization_config(self, quantization: Optional[str]) -> Optional[BitsAndBytesConfig]:
|
| 106 |
+
if quantization is None:
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
+
quantization_configs = {
|
| 110 |
+
"4bit": BitsAndBytesConfig(
|
| 111 |
+
load_in_4bit=True,
|
| 112 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 113 |
+
bnb_4bit_use_double_quant=True,
|
| 114 |
+
bnb_4bit_quant_type="nf4"
|
| 115 |
+
),
|
| 116 |
+
"8bit": BitsAndBytesConfig(
|
| 117 |
+
load_in_8bit=True
|
| 118 |
+
)
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
return quantization_configs.get(quantization)
|
| 122 |
+
|
| 123 |
+
def generate(
|
| 124 |
+
self,
|
| 125 |
+
prompt: str,
|
| 126 |
+
images: Optional[Union[Image.Image, List[Image.Image]]] = None,
|
| 127 |
+
mode: str = "balanced",
|
| 128 |
+
max_new_tokens: Optional[int] = None,
|
| 129 |
+
temperature: Optional[float] = None,
|
| 130 |
+
stream: bool = False,
|
| 131 |
+
return_metrics: bool = False,
|
| 132 |
+
**kwargs
|
| 133 |
+
) -> Union[str, tuple[str, InferenceMetrics]]:
|
| 134 |
+
|
| 135 |
+
if isinstance(images, Image.Image):
|
| 136 |
+
images = [images]
|
| 137 |
+
|
| 138 |
+
start_time = time.time()
|
| 139 |
+
initial_memory = torch.cuda.memory_allocated() / (1024**3) if torch.cuda.is_available() else 0
|
| 140 |
+
|
| 141 |
+
if images:
|
| 142 |
+
inputs = self.processor(
|
| 143 |
+
text=prompt,
|
| 144 |
+
images=images,
|
| 145 |
+
return_tensors="pt"
|
| 146 |
+
).to(self.model.device)
|
| 147 |
+
else:
|
| 148 |
+
inputs = self.processor(
|
| 149 |
+
text=prompt,
|
| 150 |
+
return_tensors="pt"
|
| 151 |
+
).to(self.model.device)
|
| 152 |
+
|
| 153 |
+
input_length = inputs['input_ids'].shape[1]
|
| 154 |
+
|
| 155 |
+
gen_config = self.generation_configs[mode].to_dict()
|
| 156 |
+
|
| 157 |
+
if max_new_tokens:
|
| 158 |
+
gen_config['max_new_tokens'] = max_new_tokens
|
| 159 |
+
if temperature:
|
| 160 |
+
gen_config['temperature'] = temperature
|
| 161 |
+
|
| 162 |
+
gen_config.update(kwargs)
|
| 163 |
+
|
| 164 |
+
with torch.no_grad():
|
| 165 |
+
if stream:
|
| 166 |
+
return self._generate_stream(inputs, gen_config, return_metrics)
|
| 167 |
+
else:
|
| 168 |
+
outputs = self.model.generate(
|
| 169 |
+
**inputs,
|
| 170 |
+
**gen_config,
|
| 171 |
+
pad_token_id=self.processor.tokenizer.eos_token_id
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if torch.cuda.is_available():
|
| 175 |
+
torch.cuda.synchronize()
|
| 176 |
+
|
| 177 |
+
end_time = time.time()
|
| 178 |
+
latency = (end_time - start_time) * 1000
|
| 179 |
+
|
| 180 |
+
response = self.processor.decode(outputs[0], skip_special_tokens=True)
|
| 181 |
+
|
| 182 |
+
if response.startswith(prompt):
|
| 183 |
+
response = response[len(prompt):].strip()
|
| 184 |
+
|
| 185 |
+
tokens_generated = outputs.shape[1] - input_length
|
| 186 |
+
tokens_per_second = tokens_generated / ((end_time - start_time) if (end_time - start_time) > 0 else 1)
|
| 187 |
+
|
| 188 |
+
final_memory = torch.cuda.memory_allocated() / (1024**3) if torch.cuda.is_available() else 0
|
| 189 |
+
memory_used = final_memory - initial_memory
|
| 190 |
+
|
| 191 |
+
metrics = InferenceMetrics(
|
| 192 |
+
latency_ms=latency,
|
| 193 |
+
tokens_generated=tokens_generated,
|
| 194 |
+
tokens_per_second=tokens_per_second,
|
| 195 |
+
memory_used_gb=memory_used,
|
| 196 |
+
input_tokens=input_length,
|
| 197 |
+
total_tokens=outputs.shape[1]
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
self.metrics_history.append(metrics)
|
| 201 |
+
|
| 202 |
+
if return_metrics:
|
| 203 |
+
return response, metrics
|
| 204 |
+
return response
|
| 205 |
+
|
| 206 |
+
def _generate_stream(self, inputs, gen_config, return_metrics):
|
| 207 |
+
from transformers import TextIteratorStreamer
|
| 208 |
+
from threading import Thread
|
| 209 |
+
|
| 210 |
+
streamer = TextIteratorStreamer(
|
| 211 |
+
self.processor.tokenizer,
|
| 212 |
+
skip_special_tokens=True,
|
| 213 |
+
skip_prompt=True
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
gen_config['streamer'] = streamer
|
| 217 |
+
|
| 218 |
+
thread = Thread(
|
| 219 |
+
target=self.model.generate,
|
| 220 |
+
kwargs={**inputs, **gen_config}
|
| 221 |
+
)
|
| 222 |
+
thread.start()
|
| 223 |
+
|
| 224 |
+
for new_text in streamer:
|
| 225 |
+
yield new_text
|
| 226 |
+
|
| 227 |
+
thread.join()
|
| 228 |
+
|
| 229 |
+
def batch_generate(
|
| 230 |
+
self,
|
| 231 |
+
prompts: List[str],
|
| 232 |
+
images_list: Optional[List[Optional[Union[Image.Image, List[Image.Image]]]]] = None,
|
| 233 |
+
mode: str = "balanced",
|
| 234 |
+
**kwargs
|
| 235 |
+
) -> List[str]:
|
| 236 |
+
|
| 237 |
+
if images_list is None:
|
| 238 |
+
images_list = [None] * len(prompts)
|
| 239 |
+
|
| 240 |
+
all_inputs = []
|
| 241 |
+
for prompt, images in zip(prompts, images_list):
|
| 242 |
+
if images:
|
| 243 |
+
if isinstance(images, Image.Image):
|
| 244 |
+
images = [images]
|
| 245 |
+
inputs = self.processor(
|
| 246 |
+
text=prompt,
|
| 247 |
+
images=images,
|
| 248 |
+
return_tensors="pt",
|
| 249 |
+
padding=True
|
| 250 |
+
)
|
| 251 |
+
else:
|
| 252 |
+
inputs = self.processor(
|
| 253 |
+
text=prompt,
|
| 254 |
+
return_tensors="pt",
|
| 255 |
+
padding=True
|
| 256 |
+
)
|
| 257 |
+
all_inputs.append(inputs)
|
| 258 |
+
|
| 259 |
+
batch_inputs = {
|
| 260 |
+
k: torch.cat([inp[k] for inp in all_inputs], dim=0).to(self.model.device)
|
| 261 |
+
for k in all_inputs[0].keys()
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
gen_config = self.generation_configs[mode].to_dict()
|
| 265 |
+
gen_config.update(kwargs)
|
| 266 |
+
|
| 267 |
+
with torch.no_grad():
|
| 268 |
+
outputs = self.model.generate(
|
| 269 |
+
**batch_inputs,
|
| 270 |
+
**gen_config,
|
| 271 |
+
pad_token_id=self.processor.tokenizer.eos_token_id
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
responses = [
|
| 275 |
+
self.processor.decode(output, skip_special_tokens=True)
|
| 276 |
+
for output in outputs
|
| 277 |
+
]
|
| 278 |
+
|
| 279 |
+
return responses
|
| 280 |
+
|
| 281 |
+
def vision_qa(
|
| 282 |
+
self,
|
| 283 |
+
image: Image.Image,
|
| 284 |
+
question: str,
|
| 285 |
+
mode: str = "precise"
|
| 286 |
+
) -> str:
|
| 287 |
+
|
| 288 |
+
prompt = f"Question: {question}\nAnswer:"
|
| 289 |
+
return self.generate(prompt, images=image, mode=mode)
|
| 290 |
+
|
| 291 |
+
def analyze_image(
|
| 292 |
+
self,
|
| 293 |
+
image: Image.Image,
|
| 294 |
+
analysis_type: str = "detailed"
|
| 295 |
+
) -> str:
|
| 296 |
+
|
| 297 |
+
prompts = {
|
| 298 |
+
"detailed": "Provide a detailed description of this image, including objects, people, actions, setting, and any text visible.",
|
| 299 |
+
"quick": "Briefly describe what you see in this image.",
|
| 300 |
+
"technical": "Analyze this image from a technical perspective, including composition, lighting, colors, and quality.",
|
| 301 |
+
"ocr": "Extract all text visible in this image and organize it clearly."
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
prompt = prompts.get(analysis_type, prompts["detailed"])
|
| 305 |
+
return self.generate(prompt, images=image, mode="precise")
|
| 306 |
+
|
| 307 |
+
def code_generation(
|
| 308 |
+
self,
|
| 309 |
+
task: str,
|
| 310 |
+
language: str = "python",
|
| 311 |
+
include_tests: bool = False
|
| 312 |
+
) -> str:
|
| 313 |
+
|
| 314 |
+
prompt = f"Write {language} code for the following task:\n{task}"
|
| 315 |
+
|
| 316 |
+
if include_tests:
|
| 317 |
+
prompt += "\n\nInclude unit tests for the code."
|
| 318 |
+
|
| 319 |
+
return self.generate(prompt, mode="code", max_new_tokens=2048)
|
| 320 |
+
|
| 321 |
+
def function_call(
|
| 322 |
+
self,
|
| 323 |
+
user_query: str,
|
| 324 |
+
available_tools: List[Dict[str, Any]]
|
| 325 |
+
) -> Dict[str, Any]:
|
| 326 |
+
|
| 327 |
+
tools_str = json.dumps(available_tools, indent=2)
|
| 328 |
+
|
| 329 |
+
prompt = f"""Available tools:
|
| 330 |
+
{tools_str}
|
| 331 |
+
|
| 332 |
+
User query: {user_query}
|
| 333 |
+
|
| 334 |
+
Respond with a JSON object specifying which tool to use and with what parameters:
|
| 335 |
+
{{"tool": "tool_name", "parameters": {{"param": "value"}}}}
|
| 336 |
+
|
| 337 |
+
Response:"""
|
| 338 |
+
|
| 339 |
+
response = self.generate(prompt, mode="precise", temperature=0.2)
|
| 340 |
+
|
| 341 |
+
try:
|
| 342 |
+
import re
|
| 343 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 344 |
+
if json_match:
|
| 345 |
+
return json.loads(json_match.group())
|
| 346 |
+
return {"error": "No valid JSON found", "raw": response}
|
| 347 |
+
except json.JSONDecodeError as e:
|
| 348 |
+
return {"error": str(e), "raw": response}
|
| 349 |
+
|
| 350 |
+
def multi_modal_rag(
|
| 351 |
+
self,
|
| 352 |
+
query: str,
|
| 353 |
+
documents: List[str],
|
| 354 |
+
images: Optional[List[Image.Image]] = None
|
| 355 |
+
) -> str:
|
| 356 |
+
|
| 357 |
+
context = "\n\n".join([f"Document {i+1}:\n{doc}" for i, doc in enumerate(documents)])
|
| 358 |
+
|
| 359 |
+
prompt = f"""Context:\n{context}\n\nQuestion: {query}\n\nAnswer based on the provided context:"""
|
| 360 |
+
|
| 361 |
+
return self.generate(prompt, images=images, mode="precise", max_new_tokens=1024)
|
| 362 |
+
|
| 363 |
+
def get_metrics_summary(self) -> Dict[str, float]:
|
| 364 |
+
|
| 365 |
+
if not self.metrics_history:
|
| 366 |
+
return {}
|
| 367 |
+
|
| 368 |
+
return {
|
| 369 |
+
"avg_latency_ms": sum(m.latency_ms for m in self.metrics_history) / len(self.metrics_history),
|
| 370 |
+
"avg_tokens_per_second": sum(m.tokens_per_second for m in self.metrics_history) / len(self.metrics_history),
|
| 371 |
+
"avg_memory_used_gb": sum(m.memory_used_gb for m in self.metrics_history) / len(self.metrics_history),
|
| 372 |
+
"total_tokens_generated": sum(m.tokens_generated for m in self.metrics_history),
|
| 373 |
+
"num_requests": len(self.metrics_history)
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
def clear_cache(self):
|
| 377 |
+
|
| 378 |
+
if torch.cuda.is_available():
|
| 379 |
+
torch.cuda.empty_cache()
|
| 380 |
+
self.model.clear_cache() if hasattr(self.model, 'clear_cache') else None
|
| 381 |
+
logger.info("Cache cleared")
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def main():
|
| 385 |
+
|
| 386 |
+
import argparse
|
| 387 |
+
|
| 388 |
+
parser = argparse.ArgumentParser(description="Advanced Helion-V2.0-Thinking Inference")
|
| 389 |
+
parser.add_argument("--model", type=str, default="DeepXR/Helion-V2.0-Thinking")
|
| 390 |
+
parser.add_argument("--quantization", type=str, choices=["4bit", "8bit", None], default=None)
|
| 391 |
+
parser.add_argument("--mode", type=str, default="balanced", choices=["creative", "precise", "balanced", "code"])
|
| 392 |
+
parser.add_argument("--prompt", type=str, help="Text prompt")
|
| 393 |
+
parser.add_argument("--image", type=str, help="Path to image file")
|
| 394 |
+
parser.add_argument("--stream", action="store_true", help="Enable streaming output")
|
| 395 |
+
parser.add_argument("--torch-compile", action="store_true", help="Use torch.compile")
|
| 396 |
+
parser.add_argument("--benchmark", action="store_true", help="Run benchmark")
|
| 397 |
+
|
| 398 |
+
args = parser.parse_args()
|
| 399 |
+
|
| 400 |
+
model = AdvancedHelionInference(
|
| 401 |
+
model_name=args.model,
|
| 402 |
+
quantization=args.quantization,
|
| 403 |
+
torch_compile=args.torch_compile
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
if args.benchmark:
|
| 407 |
+
print("Running benchmark...")
|
| 408 |
+
|
| 409 |
+
test_prompts = [
|
| 410 |
+
"Explain quantum computing in simple terms.",
|
| 411 |
+
"Write a Python function to calculate fibonacci numbers.",
|
| 412 |
+
"What are the main causes of climate change?"
|
| 413 |
+
]
|
| 414 |
+
|
| 415 |
+
for prompt in test_prompts:
|
| 416 |
+
response, metrics = model.generate(
|
| 417 |
+
prompt,
|
| 418 |
+
mode=args.mode,
|
| 419 |
+
return_metrics=True
|
| 420 |
+
)
|
| 421 |
+
print(f"\nPrompt: {prompt}")
|
| 422 |
+
print(f"Response: {response[:100]}...")
|
| 423 |
+
print(f"Metrics: {metrics}")
|
| 424 |
+
|
| 425 |
+
summary = model.get_metrics_summary()
|
| 426 |
+
print(f"\nBenchmark Summary:")
|
| 427 |
+
for key, value in summary.items():
|
| 428 |
+
print(f" {key}: {value:.2f}")
|
| 429 |
+
|
| 430 |
+
elif args.prompt:
|
| 431 |
+
image = Image.open(args.image) if args.image else None
|
| 432 |
+
|
| 433 |
+
if args.stream:
|
| 434 |
+
print("Streaming response:")
|
| 435 |
+
for text in model.generate(args.prompt, images=image, mode=args.mode, stream=True):
|
| 436 |
+
print(text, end="", flush=True)
|
| 437 |
+
print()
|
| 438 |
+
else:
|
| 439 |
+
response, metrics = model.generate(
|
| 440 |
+
args.prompt,
|
| 441 |
+
images=image,
|
| 442 |
+
mode=args.mode,
|
| 443 |
+
return_metrics=True
|
| 444 |
+
)
|
| 445 |
+
print(f"Response: {response}")
|
| 446 |
+
print(f"\nMetrics:")
|
| 447 |
+
print(f" Latency: {metrics.latency_ms:.2f}ms")
|
| 448 |
+
print(f" Tokens/sec: {metrics.tokens_per_second:.2f}")
|
| 449 |
+
print(f" Tokens generated: {metrics.tokens_generated}")
|
| 450 |
+
else:
|
| 451 |
+
print("Please provide --prompt or use --benchmark")
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
if __name__ == "__main__":
|
| 455 |
+
main()
|