Create benchmark.py
Browse files- benchmark.py +446 -0
benchmark.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Comprehensive benchmarking script for Helion-V2.0-Thinking
|
| 3 |
+
Measures performance, throughput, latency, and memory usage
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 8 |
+
from typing import List, Dict, Any
|
| 9 |
+
import time
|
| 10 |
+
import psutil
|
| 11 |
+
import numpy as np
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import json
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import gc
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class HelionBenchmark:
|
| 19 |
+
"""Performance benchmarking for Helion-V2.0-Thinking"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, model_name: str = "DeepXR/Helion-V2.0-Thinking"):
|
| 22 |
+
"""Initialize benchmark suite"""
|
| 23 |
+
print(f"Loading model for benchmarking: {model_name}")
|
| 24 |
+
|
| 25 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_name,
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
device_map="auto",
|
| 29 |
+
trust_remote_code=True
|
| 30 |
+
)
|
| 31 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 32 |
+
self.model.eval()
|
| 33 |
+
|
| 34 |
+
print("Model loaded successfully")
|
| 35 |
+
|
| 36 |
+
# Get device info
|
| 37 |
+
if torch.cuda.is_available():
|
| 38 |
+
self.device = "cuda"
|
| 39 |
+
self.device_name = torch.cuda.get_device_name(0)
|
| 40 |
+
self.total_vram = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 41 |
+
else:
|
| 42 |
+
self.device = "cpu"
|
| 43 |
+
self.device_name = "CPU"
|
| 44 |
+
self.total_vram = 0
|
| 45 |
+
|
| 46 |
+
print(f"Device: {self.device_name}")
|
| 47 |
+
if self.device == "cuda":
|
| 48 |
+
print(f"Total VRAM: {self.total_vram:.2f} GB")
|
| 49 |
+
|
| 50 |
+
def measure_memory_usage(self) -> Dict[str, float]:
|
| 51 |
+
"""Measure current memory usage"""
|
| 52 |
+
memory_stats = {}
|
| 53 |
+
|
| 54 |
+
if self.device == "cuda":
|
| 55 |
+
memory_stats['vram_allocated_gb'] = torch.cuda.memory_allocated() / (1024**3)
|
| 56 |
+
memory_stats['vram_reserved_gb'] = torch.cuda.memory_reserved() / (1024**3)
|
| 57 |
+
memory_stats['vram_peak_gb'] = torch.cuda.max_memory_allocated() / (1024**3)
|
| 58 |
+
|
| 59 |
+
# System RAM
|
| 60 |
+
memory_stats['ram_used_gb'] = psutil.Process().memory_info().rss / (1024**3)
|
| 61 |
+
|
| 62 |
+
return memory_stats
|
| 63 |
+
|
| 64 |
+
def benchmark_text_generation(
|
| 65 |
+
self,
|
| 66 |
+
prompts: List[str],
|
| 67 |
+
max_new_tokens: int = 256
|
| 68 |
+
) -> Dict[str, Any]:
|
| 69 |
+
"""
|
| 70 |
+
Benchmark text generation performance
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Dict with latency, throughput, and token metrics
|
| 74 |
+
"""
|
| 75 |
+
print("\n=== Benchmarking Text Generation ===")
|
| 76 |
+
|
| 77 |
+
latencies = []
|
| 78 |
+
tokens_per_second = []
|
| 79 |
+
|
| 80 |
+
# Warmup
|
| 81 |
+
warmup_prompt = "Test prompt for warmup."
|
| 82 |
+
inputs = self.processor(text=warmup_prompt, return_tensors="pt").to(self.model.device)
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
_ = self.model.generate(**inputs, max_new_tokens=50)
|
| 85 |
+
|
| 86 |
+
if self.device == "cuda":
|
| 87 |
+
torch.cuda.synchronize()
|
| 88 |
+
torch.cuda.reset_peak_memory_stats()
|
| 89 |
+
|
| 90 |
+
# Benchmark
|
| 91 |
+
for prompt in tqdm(prompts, desc="Text Generation"):
|
| 92 |
+
inputs = self.processor(text=prompt, return_tensors="pt").to(self.model.device)
|
| 93 |
+
|
| 94 |
+
start_time = time.time()
|
| 95 |
+
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
outputs = self.model.generate(
|
| 98 |
+
**inputs,
|
| 99 |
+
max_new_tokens=max_new_tokens,
|
| 100 |
+
do_sample=False
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
if self.device == "cuda":
|
| 104 |
+
torch.cuda.synchronize()
|
| 105 |
+
|
| 106 |
+
end_time = time.time()
|
| 107 |
+
latency = end_time - start_time
|
| 108 |
+
|
| 109 |
+
# Calculate tokens generated
|
| 110 |
+
generated_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
|
| 111 |
+
tps = generated_tokens / latency
|
| 112 |
+
|
| 113 |
+
latencies.append(latency)
|
| 114 |
+
tokens_per_second.append(tps)
|
| 115 |
+
|
| 116 |
+
# Memory stats
|
| 117 |
+
memory_stats = self.measure_memory_usage()
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"text_generation": {
|
| 121 |
+
"avg_latency_ms": np.mean(latencies) * 1000,
|
| 122 |
+
"p50_latency_ms": np.percentile(latencies, 50) * 1000,
|
| 123 |
+
"p95_latency_ms": np.percentile(latencies, 95) * 1000,
|
| 124 |
+
"p99_latency_ms": np.percentile(latencies, 99) * 1000,
|
| 125 |
+
"avg_tokens_per_second": np.mean(tokens_per_second),
|
| 126 |
+
"total_prompts": len(prompts),
|
| 127 |
+
**memory_stats
|
| 128 |
+
}
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
def benchmark_vision(
|
| 132 |
+
self,
|
| 133 |
+
image_prompts: List[tuple[Image.Image, str]],
|
| 134 |
+
max_new_tokens: int = 256
|
| 135 |
+
) -> Dict[str, Any]:
|
| 136 |
+
"""
|
| 137 |
+
Benchmark vision + text generation
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
image_prompts: List of (image, prompt) tuples
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Performance metrics
|
| 144 |
+
"""
|
| 145 |
+
print("\n=== Benchmarking Vision Tasks ===")
|
| 146 |
+
|
| 147 |
+
latencies = []
|
| 148 |
+
tokens_per_second = []
|
| 149 |
+
|
| 150 |
+
# Warmup
|
| 151 |
+
if image_prompts:
|
| 152 |
+
warmup_image, warmup_prompt = image_prompts[0]
|
| 153 |
+
inputs = self.processor(
|
| 154 |
+
text=warmup_prompt,
|
| 155 |
+
images=warmup_image,
|
| 156 |
+
return_tensors="pt"
|
| 157 |
+
).to(self.model.device)
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
_ = self.model.generate(**inputs, max_new_tokens=50)
|
| 160 |
+
|
| 161 |
+
if self.device == "cuda":
|
| 162 |
+
torch.cuda.synchronize()
|
| 163 |
+
torch.cuda.reset_peak_memory_stats()
|
| 164 |
+
|
| 165 |
+
# Benchmark
|
| 166 |
+
for image, prompt in tqdm(image_prompts, desc="Vision Tasks"):
|
| 167 |
+
inputs = self.processor(
|
| 168 |
+
text=prompt,
|
| 169 |
+
images=image,
|
| 170 |
+
return_tensors="pt"
|
| 171 |
+
).to(self.model.device)
|
| 172 |
+
|
| 173 |
+
start_time = time.time()
|
| 174 |
+
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
outputs = self.model.generate(
|
| 177 |
+
**inputs,
|
| 178 |
+
max_new_tokens=max_new_tokens,
|
| 179 |
+
do_sample=False
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
if self.device == "cuda":
|
| 183 |
+
torch.cuda.synchronize()
|
| 184 |
+
|
| 185 |
+
end_time = time.time()
|
| 186 |
+
latency = end_time - start_time
|
| 187 |
+
|
| 188 |
+
generated_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
|
| 189 |
+
tps = generated_tokens / latency
|
| 190 |
+
|
| 191 |
+
latencies.append(latency)
|
| 192 |
+
tokens_per_second.append(tps)
|
| 193 |
+
|
| 194 |
+
memory_stats = self.measure_memory_usage()
|
| 195 |
+
|
| 196 |
+
return {
|
| 197 |
+
"vision_tasks": {
|
| 198 |
+
"avg_latency_ms": np.mean(latencies) * 1000,
|
| 199 |
+
"p50_latency_ms": np.percentile(latencies, 50) * 1000,
|
| 200 |
+
"p95_latency_ms": np.percentile(latencies, 95) * 1000,
|
| 201 |
+
"p99_latency_ms": np.percentile(latencies, 99) * 1000,
|
| 202 |
+
"avg_tokens_per_second": np.mean(tokens_per_second),
|
| 203 |
+
"total_image_prompts": len(image_prompts),
|
| 204 |
+
**memory_stats
|
| 205 |
+
}
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
def benchmark_long_context(
|
| 209 |
+
self,
|
| 210 |
+
context_lengths: List[int] = [1000, 5000, 10000, 50000, 100000]
|
| 211 |
+
) -> Dict[str, Any]:
|
| 212 |
+
"""
|
| 213 |
+
Benchmark performance with varying context lengths
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
context_lengths: List of context lengths to test
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
Performance metrics by context length
|
| 220 |
+
"""
|
| 221 |
+
print("\n=== Benchmarking Long Context Performance ===")
|
| 222 |
+
|
| 223 |
+
results = {}
|
| 224 |
+
|
| 225 |
+
for length in tqdm(context_lengths, desc="Context Lengths"):
|
| 226 |
+
# Generate synthetic context
|
| 227 |
+
context = "This is a test sentence. " * (length // 6) # Approx tokens
|
| 228 |
+
prompt = f"{context}\n\nQuestion: What is the main topic of this text?\nAnswer:"
|
| 229 |
+
|
| 230 |
+
inputs = self.processor(text=prompt, return_tensors="pt").to(self.model.device)
|
| 231 |
+
|
| 232 |
+
# Check if context fits
|
| 233 |
+
if inputs['input_ids'].shape[1] > length:
|
| 234 |
+
print(f"Skipping {length} - generated context too long")
|
| 235 |
+
continue
|
| 236 |
+
|
| 237 |
+
if self.device == "cuda":
|
| 238 |
+
torch.cuda.synchronize()
|
| 239 |
+
torch.cuda.reset_peak_memory_stats()
|
| 240 |
+
|
| 241 |
+
start_time = time.time()
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
outputs = self.model.generate(
|
| 246 |
+
**inputs,
|
| 247 |
+
max_new_tokens=128,
|
| 248 |
+
do_sample=False
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if self.device == "cuda":
|
| 252 |
+
torch.cuda.synchronize()
|
| 253 |
+
|
| 254 |
+
end_time = time.time()
|
| 255 |
+
latency = end_time - start_time
|
| 256 |
+
|
| 257 |
+
memory_stats = self.measure_memory_usage()
|
| 258 |
+
|
| 259 |
+
results[f"context_{length}"] = {
|
| 260 |
+
"latency_ms": latency * 1000,
|
| 261 |
+
"input_tokens": inputs['input_ids'].shape[1],
|
| 262 |
+
**memory_stats
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
except Exception as e:
|
| 266 |
+
results[f"context_{length}"] = {
|
| 267 |
+
"error": str(e)
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
# Cleanup
|
| 271 |
+
del inputs, outputs
|
| 272 |
+
gc.collect()
|
| 273 |
+
if self.device == "cuda":
|
| 274 |
+
torch.cuda.empty_cache()
|
| 275 |
+
|
| 276 |
+
return {"long_context": results}
|
| 277 |
+
|
| 278 |
+
def benchmark_throughput(
|
| 279 |
+
self,
|
| 280 |
+
batch_sizes: List[int] = [1, 2, 4, 8],
|
| 281 |
+
sequence_length: int = 512
|
| 282 |
+
) -> Dict[str, Any]:
|
| 283 |
+
"""
|
| 284 |
+
Benchmark throughput with different batch sizes
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
batch_sizes: List of batch sizes to test
|
| 288 |
+
sequence_length: Target sequence length
|
| 289 |
+
|
| 290 |
+
Returns:
|
| 291 |
+
Throughput metrics
|
| 292 |
+
"""
|
| 293 |
+
print("\n=== Benchmarking Throughput ===")
|
| 294 |
+
|
| 295 |
+
results = {}
|
| 296 |
+
prompt = "Explain the concept of artificial intelligence. " * 10
|
| 297 |
+
|
| 298 |
+
for batch_size in tqdm(batch_sizes, desc="Batch Sizes"):
|
| 299 |
+
try:
|
| 300 |
+
# Create batch
|
| 301 |
+
prompts = [prompt] * batch_size
|
| 302 |
+
inputs = self.processor(
|
| 303 |
+
text=prompts,
|
| 304 |
+
return_tensors="pt",
|
| 305 |
+
padding=True
|
| 306 |
+
).to(self.model.device)
|
| 307 |
+
|
| 308 |
+
if self.device == "cuda":
|
| 309 |
+
torch.cuda.synchronize()
|
| 310 |
+
torch.cuda.reset_peak_memory_stats()
|
| 311 |
+
|
| 312 |
+
start_time = time.time()
|
| 313 |
+
|
| 314 |
+
with torch.no_grad():
|
| 315 |
+
outputs = self.model.generate(
|
| 316 |
+
**inputs,
|
| 317 |
+
max_new_tokens=256,
|
| 318 |
+
do_sample=False
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
if self.device == "cuda":
|
| 322 |
+
torch.cuda.synchronize()
|
| 323 |
+
|
| 324 |
+
end_time = time.time()
|
| 325 |
+
latency = end_time - start_time
|
| 326 |
+
|
| 327 |
+
# Calculate throughput
|
| 328 |
+
total_tokens = outputs.shape[0] * outputs.shape[1]
|
| 329 |
+
throughput = total_tokens / latency
|
| 330 |
+
|
| 331 |
+
memory_stats = self.measure_memory_usage()
|
| 332 |
+
|
| 333 |
+
results[f"batch_{batch_size}"] = {
|
| 334 |
+
"latency_ms": latency * 1000,
|
| 335 |
+
"throughput_tokens_per_sec": throughput,
|
| 336 |
+
"tokens_per_sample": outputs.shape[1],
|
| 337 |
+
**memory_stats
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
except Exception as e:
|
| 341 |
+
results[f"batch_{batch_size}"] = {
|
| 342 |
+
"error": str(e)
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
# Cleanup
|
| 346 |
+
del inputs, outputs
|
| 347 |
+
gc.collect()
|
| 348 |
+
if self.device == "cuda":
|
| 349 |
+
torch.cuda.empty_cache()
|
| 350 |
+
|
| 351 |
+
return {"throughput": results}
|
| 352 |
+
|
| 353 |
+
def run_full_benchmark(self) -> Dict[str, Any]:
|
| 354 |
+
"""Run complete benchmark suite"""
|
| 355 |
+
print("\n" + "="*60)
|
| 356 |
+
print("Starting Full Benchmark Suite")
|
| 357 |
+
print(f"Device: {self.device_name}")
|
| 358 |
+
print("="*60)
|
| 359 |
+
|
| 360 |
+
results = {
|
| 361 |
+
"system_info": {
|
| 362 |
+
"device": self.device,
|
| 363 |
+
"device_name": self.device_name,
|
| 364 |
+
"total_vram_gb": self.total_vram if self.device == "cuda" else None,
|
| 365 |
+
"pytorch_version": torch.__version__,
|
| 366 |
+
"cuda_available": torch.cuda.is_available()
|
| 367 |
+
}
|
| 368 |
+
}
|
| 369 |
+
|
| 370 |
+
# Text generation benchmark
|
| 371 |
+
text_prompts = [
|
| 372 |
+
"Explain quantum mechanics in simple terms.",
|
| 373 |
+
"Write a short story about space exploration.",
|
| 374 |
+
"What are the benefits of machine learning?",
|
| 375 |
+
"Describe the process of photosynthesis.",
|
| 376 |
+
"How does blockchain technology work?"
|
| 377 |
+
]
|
| 378 |
+
results.update(self.benchmark_text_generation(text_prompts, max_new_tokens=256))
|
| 379 |
+
|
| 380 |
+
# Long context benchmark
|
| 381 |
+
results.update(self.benchmark_long_context([1000, 5000, 10000, 50000]))
|
| 382 |
+
|
| 383 |
+
# Throughput benchmark
|
| 384 |
+
results.update(self.benchmark_throughput([1, 2, 4]))
|
| 385 |
+
|
| 386 |
+
print("\n" + "="*60)
|
| 387 |
+
print("Benchmark Complete")
|
| 388 |
+
print("="*60)
|
| 389 |
+
|
| 390 |
+
return results
|
| 391 |
+
|
| 392 |
+
def print_results(self, results: Dict[str, Any]):
|
| 393 |
+
"""Print benchmark results in a readable format"""
|
| 394 |
+
print("\n" + "="*60)
|
| 395 |
+
print("BENCHMARK RESULTS")
|
| 396 |
+
print("="*60)
|
| 397 |
+
|
| 398 |
+
def print_dict(d, indent=0):
|
| 399 |
+
for key, value in d.items():
|
| 400 |
+
if isinstance(value, dict):
|
| 401 |
+
print(" " * indent + f"{key}:")
|
| 402 |
+
print_dict(value, indent + 1)
|
| 403 |
+
elif isinstance(value, float):
|
| 404 |
+
print(" " * indent + f"{key}: {value:.4f}")
|
| 405 |
+
else:
|
| 406 |
+
print(" " * indent + f"{key}: {value}")
|
| 407 |
+
|
| 408 |
+
print_dict(results)
|
| 409 |
+
print("="*60 + "\n")
|
| 410 |
+
|
| 411 |
+
def save_results(self, results: Dict[str, Any], filename: str = "benchmark_results.json"):
|
| 412 |
+
"""Save results to JSON file"""
|
| 413 |
+
with open(filename, 'w') as f:
|
| 414 |
+
json.dump(results, f, indent=2)
|
| 415 |
+
print(f"Results saved to {filename}")
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def main():
|
| 419 |
+
"""Main benchmark function"""
|
| 420 |
+
import argparse
|
| 421 |
+
|
| 422 |
+
parser = argparse.ArgumentParser(description="Benchmark Helion-V2.0-Thinking")
|
| 423 |
+
parser.add_argument(
|
| 424 |
+
"--model",
|
| 425 |
+
type=str,
|
| 426 |
+
default="DeepXR/Helion-V2.0-Thinking",
|
| 427 |
+
help="Model name or path"
|
| 428 |
+
)
|
| 429 |
+
parser.add_argument(
|
| 430 |
+
"--output",
|
| 431 |
+
type=str,
|
| 432 |
+
default="benchmark_results.json",
|
| 433 |
+
help="Output file for results"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
args = parser.parse_args()
|
| 437 |
+
|
| 438 |
+
# Run benchmark
|
| 439 |
+
benchmark = HelionBenchmark(args.model)
|
| 440 |
+
results = benchmark.run_full_benchmark()
|
| 441 |
+
benchmark.print_results(results)
|
| 442 |
+
benchmark.save_results(results, args.output)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
if __name__ == "__main__":
|
| 446 |
+
main()
|