Update README.md
Browse files
README.md
CHANGED
|
@@ -4,19 +4,19 @@ language:
|
|
| 4 |
license: mit
|
| 5 |
tags:
|
| 6 |
- automl
|
| 7 |
-
- tabular
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
datasets:
|
| 11 |
- aedupuga/lego-sizes
|
| 12 |
metrics:
|
| 13 |
-
- accuracy
|
| 14 |
-
- f1
|
| 15 |
model-index:
|
| 16 |
- name: Lego Brick Classification (Classical AutoML)
|
| 17 |
results:
|
| 18 |
- task:
|
| 19 |
-
type: classification
|
| 20 |
name: Tabular Classification
|
| 21 |
dataset:
|
| 22 |
name: aedupuga/lego-sizes
|
|
@@ -27,12 +27,24 @@ model-index:
|
|
| 27 |
value: 0.97
|
| 28 |
- type: f1
|
| 29 |
value: 0.96
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
---
|
| 31 |
|
| 32 |
# Model Card for Lego Brick Classification (Classical AutoML)
|
| 33 |
|
| 34 |
-
This model classifies LEGO pieces into three types — **Standard**, **Flat**, and **Sloped** — using their dimensions (Length, Height, Width, Studs).
|
| 35 |
-
It was trained
|
| 36 |
|
| 37 |
---
|
| 38 |
|
|
@@ -56,7 +68,7 @@ It was trained with **AutoGluon Tabular AutoML**, selecting the best-performing
|
|
| 56 |
|
| 57 |
### Direct Use
|
| 58 |
- Educational practice in **tabular classification**.
|
| 59 |
-
- Experimenting with AutoML search and hyperparameter tuning.
|
| 60 |
|
| 61 |
### Downstream Use
|
| 62 |
- Could be used as a **teaching example** for AutoML pipelines on small tabular datasets.
|
|
|
|
| 4 |
license: mit
|
| 5 |
tags:
|
| 6 |
- automl
|
| 7 |
+
- tabular-classification
|
| 8 |
+
- autogluon
|
| 9 |
+
- cmu-course
|
| 10 |
datasets:
|
| 11 |
- aedupuga/lego-sizes
|
| 12 |
metrics:
|
| 13 |
+
- type: accuracy
|
| 14 |
+
- type: f1
|
| 15 |
model-index:
|
| 16 |
- name: Lego Brick Classification (Classical AutoML)
|
| 17 |
results:
|
| 18 |
- task:
|
| 19 |
+
type: tabular-classification
|
| 20 |
name: Tabular Classification
|
| 21 |
dataset:
|
| 22 |
name: aedupuga/lego-sizes
|
|
|
|
| 27 |
value: 0.97
|
| 28 |
- type: f1
|
| 29 |
value: 0.96
|
| 30 |
+
- task:
|
| 31 |
+
type: tabular-classification
|
| 32 |
+
name: Tabular Classification
|
| 33 |
+
dataset:
|
| 34 |
+
name: aedupuga/lego-sizes
|
| 35 |
+
type: classification
|
| 36 |
+
split: original
|
| 37 |
+
metrics:
|
| 38 |
+
- type: accuracy
|
| 39 |
+
value: 0.90
|
| 40 |
+
- type: f1
|
| 41 |
+
value: 0.89
|
| 42 |
---
|
| 43 |
|
| 44 |
# Model Card for Lego Brick Classification (Classical AutoML)
|
| 45 |
|
| 46 |
+
This model classifies LEGO pieces into three types — **Standard**, **Flat**, and **Sloped** — using their geometric dimensions (*Length, Height, Width, Studs*).
|
| 47 |
+
It was trained using **AutoGluon Tabular AutoML**, which automatically searched over classical ML models (LightGBM, XGBoost, CatBoost, Random Forest, k-NN, Neural Network) and selected the best-performing one.
|
| 48 |
|
| 49 |
---
|
| 50 |
|
|
|
|
| 68 |
|
| 69 |
### Direct Use
|
| 70 |
- Educational practice in **tabular classification**.
|
| 71 |
+
- Experimenting with AutoML search and hyperparameter tuning.
|
| 72 |
|
| 73 |
### Downstream Use
|
| 74 |
- Could be used as a **teaching example** for AutoML pipelines on small tabular datasets.
|