Jesus02 commited on
Commit
d119ec8
·
verified ·
1 Parent(s): 82b5420

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: tabular-classification
6
+ tags:
7
+ - sklearn
8
+ - classification
9
+ - iris
10
+ - tabular
11
+ datasets:
12
+ - brjapon/iris
13
+ metrics:
14
+ - accuracy
15
+ library_name: scikit-learn
16
+ new_version: "v1.0"
17
+ model-index:
18
+ - name: Iris Decision Tree
19
+ results:
20
+ - task:
21
+ type: tabular-classification
22
+ name: Classification
23
+ metrics:
24
+ - type: accuracy
25
+ value: 0.97
26
+ name: Test Accuracy
27
+ ---
28
+
29
+ # Iris Classification Models
30
+
31
+ This repository starts with a **Decision Tree** model trained on the classic **Iris dataset**. The model classifies iris flowers into three species—*setosa*, *versicolor*, or *virginica*—based on four numeric features (sepal length, sepal width, petal length, and petal width).
32
+
33
+ Because of its small size and simplicity, this model is intended primarily for **demonstration and educational** purposes.
34
+
35
+ ## Model Description
36
+ - **Framework**: [Scikit-Learn](https://scikit-learn.org/stable/)
37
+ - **Algorithm**: Decision Tree (`DecisionTreeClassifier` class)
38
+ - **Hyperparameters**:
39
+ - Defaults for Decision Tree in Scikit-Learn
40
+
41
+ ### Intended Uses
42
+ - **Education/Proof-of-Concept**: Demonstrates loading a scikit-learn model from the Hugging Face Hub.
43
+ - **Beginner ML Tutorials**: Introduction to classification tasks, usage of Hugging Face model hosting, and deploying simple demos in Spaces.
44
+
45
+ ### Limitations
46
+ - **Dataset Size**: The Iris dataset is small (150 samples). Performance metrics may not extrapolate to real-world scenarios.
47
+ - **Domain Constraints**: The dataset only covers three iris species and may not generalize to other types of flowers.
48
+ - **Not Production-Ready**: This model is not suited for critical applications (e.g., healthcare, autonomous vehicles).
49
+
50
+ ## How to Use
51
+ To use this model, you can load the `.joblib` file from the Hub in Python code:
52
+
53
+ ```python
54
+ import joblib
55
+ from huggingface_hub import hf_hub_download
56
+
57
+ # Accompanying dataset is hosted in Hugging Face under 'Jesus02/iris-clase'
58
+ model_path = hf_hub_download(repo_id="brjapon/iris",
59
+ filename="iris_dt.joblib",
60
+ repo_type="model")
61
+
62
+ model = joblib.load(model_path)
63
+
64
+ # Example prediction (random values below)
65
+ sample_input = [[5.1, 3.5, 1.4, 0.2]]
66
+ prediction = model.predict(sample_input)
67
+ print(prediction) # e.g., [0] which might correspond to 'setosa'
68
+ ```
69
+
70
+ ## Training Procedure
71
+ - **Training Data**: 80% of the 150-sample Iris dataset (120 samples).
72
+ - **Validation Data**: 20% (30 samples).
73
+ - **Steps**:
74
+ 1. Loaded dataset (obtained from HF repository `brjapon/iris`)
75
+ 2. Split into training and test sets with `train_test_split`
76
+ 3. Trained Decision Tree model with default settings
77
+ 4. Evaluated accuracy on the test set
78
+
79
+ ## Performance
80
+ Using a random 80/20 split, the model typically achieves **~97%** accuracy on the test subset. Actual results may vary depending on your specific train/test split random state.
81
+
82
+ ## Limitations & Bias
83
+ - The Iris dataset is not representative of modern, large-scale classification tasks.
84
+ - Results should not be generalized beyond the included species and scenario.