Commit
·
bf72f5f
1
Parent(s):
eeaa892
Update README.md
Browse files
README.md
CHANGED
|
@@ -7,77 +7,15 @@ tags:
|
|
| 7 |
- transformers
|
| 8 |
---
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 13 |
-
|
| 14 |
-
<!--- Describe your model here -->
|
| 15 |
-
|
| 16 |
-
## Usage (Sentence-Transformers)
|
| 17 |
-
|
| 18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 19 |
-
|
| 20 |
-
```
|
| 21 |
-
pip install -U sentence-transformers
|
| 22 |
-
```
|
| 23 |
-
|
| 24 |
-
Then you can use the model like this:
|
| 25 |
-
|
| 26 |
-
```python
|
| 27 |
-
from sentence_transformers import SentenceTransformer
|
| 28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 29 |
-
|
| 30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
| 31 |
-
embeddings = model.encode(sentences)
|
| 32 |
-
print(embeddings)
|
| 33 |
-
```
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
## Usage (HuggingFace Transformers)
|
| 38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 39 |
-
|
| 40 |
-
```python
|
| 41 |
-
from transformers import AutoTokenizer, AutoModel
|
| 42 |
-
import torch
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
| 46 |
-
def mean_pooling(model_output, attention_mask):
|
| 47 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 48 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 49 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# Sentences we want sentence embeddings for
|
| 53 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 54 |
-
|
| 55 |
-
# Load model from HuggingFace Hub
|
| 56 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
| 57 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
| 58 |
-
|
| 59 |
-
# Tokenize sentences
|
| 60 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 61 |
-
|
| 62 |
-
# Compute token embeddings
|
| 63 |
-
with torch.no_grad():
|
| 64 |
-
model_output = model(**encoded_input)
|
| 65 |
-
|
| 66 |
-
# Perform pooling. In this case, mean pooling.
|
| 67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 68 |
-
|
| 69 |
-
print("Sentence embeddings:")
|
| 70 |
-
print(sentence_embeddings)
|
| 71 |
-
```
|
| 72 |
|
|
|
|
| 73 |
|
|
|
|
| 74 |
|
| 75 |
## Evaluation Results
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 80 |
-
|
| 81 |
|
| 82 |
## Training
|
| 83 |
The model was trained with the parameters:
|
|
@@ -125,4 +63,11 @@ SentenceTransformer(
|
|
| 125 |
|
| 126 |
## Citing & Authors
|
| 127 |
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
- transformers
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# SBERT-base-nli-v2-bitfit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
## Usage
|
| 13 |
|
| 14 |
+
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt
|
| 15 |
|
| 16 |
## Evaluation Results
|
| 17 |
|
| 18 |
+
For eval results, refer to our paper: https://arxiv.org/abs/2202.08904
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Training
|
| 21 |
The model was trained with the parameters:
|
|
|
|
| 63 |
|
| 64 |
## Citing & Authors
|
| 65 |
|
| 66 |
+
```bibtex
|
| 67 |
+
@article{muennighoff2022sgpt,
|
| 68 |
+
title={SGPT: GPT Sentence Embeddings for Semantic Search},
|
| 69 |
+
author={Muennighoff, Niklas},
|
| 70 |
+
journal={arXiv preprint arXiv:2202.08904},
|
| 71 |
+
year={2022}
|
| 72 |
+
}
|
| 73 |
+
```
|