Steveeeeeeen HF Staff commited on
Commit
8c9a691
·
verified ·
1 Parent(s): bf6c72f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -164
README.md CHANGED
@@ -4,197 +4,136 @@ datasets:
4
  - facebook/omnilingual-asr-corpus
5
  pipeline_tag: automatic-speech-recognition
6
  ---
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
-
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
 
 
134
 
 
135
 
136
- ## Model Examination [optional]
 
 
137
 
138
- <!-- Relevant interpretability work for the model goes here -->
 
 
139
 
140
- [More Information Needed]
141
 
142
- ## Environmental Impact
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
145
 
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
 
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
 
154
- ## Technical Specifications [optional]
155
 
156
- ### Model Architecture and Objective
157
 
158
- [More Information Needed]
 
159
 
160
- ### Compute Infrastructure
 
 
161
 
162
- [More Information Needed]
 
 
 
163
 
164
- #### Hardware
165
 
166
- [More Information Needed]
167
 
168
- #### Software
169
 
170
- [More Information Needed]
171
 
172
- ## Citation [optional]
173
 
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
 
176
  **BibTeX:**
177
 
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
 
185
 
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
187
 
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
 
196
- [More Information Needed]
 
 
 
 
 
197
 
198
- ## Model Card Contact
199
 
200
- [More Information Needed]
 
4
  - facebook/omnilingual-asr-corpus
5
  pipeline_tag: automatic-speech-recognition
6
  ---
 
7
 
8
+ # Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages
9
+
10
+ <div align="center" style="lline-height: 1.2; font-size:16px; margin-bottom: 30px;">
11
+ <a href="https://huggingface.co/facebook" target="_blank" style="margin: 2px;">
12
+ 🤗 Hugging Face
13
+ </a> |
14
+ <a href="https://github.com/facebookresearch/omnilingual-asr" target="_blank" style="margin: 2px;">
15
+ 🐙 GitHub
16
+ </a> |
17
+ <a href="https://huggingface.co/spaces/facebook/omniasr-transcriptions" target="_blank" style="margin: 2px;">
18
+ 🤖️ Demo
19
+ </a> |
20
+ <a href="https://ai.meta.com/research/publications/omnilingual-asr-open-source-multilingual-speech-recognition-for-1600-languages/" target="_blank" style="margin: 2px;">
21
+ 📃 Paper
22
+ </a> |
23
+ <a href="https://ai.meta.com/blog/omnilingual-asr-advancing-automatic-speech-recognition/" target="_blank" style="margin: 2px;">
24
+ 📝 Blogpost
25
+ </a> |
26
+ <a href="https://github.com/facebookresearch/omnilingual-asr/blob/main/LICENSE" style="margin: 2px;">
27
+ 📄 License: Apache 2.0
28
+ </a>
29
+ </div>
30
+
31
+ # Model Card for omniASR-CTC-1B
32
+
33
+ ## Model Description
34
+
35
+ This model is part of the **Omnilingual ASR** family released by Meta AI. The original suite includes:
36
+
37
+ <!-- TODO : add new tokenizer, we'll get two tokenizer, add mssing speed numbers-->
38
+ | Model Name | Features | Parameters | Download Size (FP32) | Inference VRAM¹ | Real-Time Factor¹ (relative speed)² |
39
+ |---------------------|---------------|------------:|---------------:|---------------:|-----------:|
40
+ | [`omniASR_W2V_300M`](https://huggingface.co/Steveeeeeeen/omniASR-W2V-300M) | SSL | 317_390_592 | 1.2 GiB | | |
41
+ | [`omniASR_W2V_1B`](https://huggingface.co/Steveeeeeeen/omniASR-W2V-1B) | SSL | 965_514_752 | 3.6 GiB | | |
42
+ | [`omniASR_W2V_3B`](https://huggingface.co/Steveeeeeeen/omniASR-W2V-3B) | SSL | 3_064_124_672 | 12.0 GiB | | |
43
+ | [`omniASR_W2V_7B`](https://huggingface.co/Steveeeeeeen/omniASR-W2V-7B) | SSL | 6_488_487_168 | 25.0 GiB | | |
44
+ | [`omniASR_CTC_300M`](https://huggingface.co/Steveeeeeeen/omniASR-CTC-300M) | ASR | 325_494_996 | 1.3 GiB | ~2 GiB | 0.001 (96x) |
45
+ | [`omniASR_CTC_1B`](https://huggingface.co/Steveeeeeeen/omniASR-CTC-1B) | ASR | 975_065_300 | 3.7 GiB | ~3 GiB | 0.002 (48x) |
46
+ | [`omniASR_CTC_3B`](https://huggingface.co/Steveeeeeeen/omniASR-CTC-3B) | ASR | 3_080_423_636 | 12.0 GiB | ~8 GiB | 0.003 (32x) |
47
+ | [`omniASR_CTC_7B`](https://huggingface.co/Steveeeeeeen/omniASR-CTC-7B) | ASR | 6_504_786_132 | 25.0 GiB | ~15 GiB | 0.006 (16x) |
48
+ | [`omniASR_LLM_300M`](https://huggingface.co/Steveeeeeeen/omniASR-LLM-300M) | ASR with optional language conditioning | 1_627_603_584 | 6.1 GiB | ~5 GiB | 0.090 (~1x) |
49
+ | [`omniASR_LLM_1B`](https://huggingface.co/Steveeeeeeen/omniASR-LLM-1B) | ASR with optional language conditioning | 2_275_710_592 | 8.5 GiB | ~6 GiB | 0.091 (~1x) |
50
+ | [`omniASR_LLM_3B`](https://huggingface.co/Steveeeeeeen/omniASR-LLM-3B) | ASR with optional language conditioning | 4_376_679_040 | 17.0 GiB | ~10 GiB | 0.093 (~1x) |
51
+ | [`omniASR_LLM_7B`](https://huggingface.co/Steveeeeeeen/omniASR-LLM-7B) | ASR with optional language conditioning | 7_801_041_536 | 30.0 GiB | ~17 GiB | 0.092 (~1x) |
52
+ | [`omniASR_LLM_7B_ZS`](https://huggingface.co/Steveeeeeeen/omniASR-LLM-7B-ZS) | Zero-Shot ASR | 7_810_900_608 | 30.0 GiB | ~20 GiB | 0.194 (~0.5x) |
53
+
54
+
55
+ ¹ (batch=1, audio_len=30s, BF16, A100)
56
+
57
+ ² Relative speed to `omniASR_LLM_7B`
58
 
59
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ ## Installation
62
 
63
+ The models were developed using [fairseq2](https://github.com/facebookresearch/fairseq2), a research-focused sequence modeling toolkit. While we provide a **reference** inference pipeline that works across platforms, audio support requires [libsndfile](https://github.com/facebookresearch/fairseq2?tab=readme-ov-file#system-dependencies) (Mac: `brew install libsndfile`; Windows may need an additional [setup](https://github.com/facebookresearch/fairseq2?tab=readme-ov-file#installing-on-windows)).
64
 
65
+ ```bash
66
+ # using pip
67
+ pip install omnilingual-asr
68
 
69
+ # using uv
70
+ uv add omnilingual-asr
71
+ ```
72
 
 
73
 
74
+ ## Inference
75
 
76
+ ```python
77
+ from omnilingual_asr.models.inference.pipeline import ASRInferencePipeline
78
 
79
+ pipeline = ASRInferencePipeline(model_card="omniASR_LLM_7B")
80
 
81
+ audio_files = ["/path/to/eng_audio1.flac", "/path/to/deu_audio2.wav"]
82
+ lang = ["eng_Latn", "deu_Latn"]
83
+ transcriptions = pipeline.transcribe(audio_files, lang=lang, batch_size=2)
84
+ ```
 
85
 
86
+ ## Supported Languages
87
 
88
+ To view the full list of 1600+ supported languages, you can access the language list [programmatically](/src/omnilingual_asr/models/wav2vec2_llama/lang_ids.py):
89
 
90
+ ```python
91
+ from omnilingual_asr.models.wav2vec2_llama.lang_ids import supported_langs
92
 
93
+ # Print all supported languages
94
+ print(f"Total supported languages: {len(supported_langs)}")
95
+ print(supported_langs)
96
 
97
+ # Check if a specific language is supported
98
+ if "eng_Latn" in supported_langs:
99
+ print("English (Latin script) is supported!")
100
+ ```
101
 
102
+ Languages follow the format `{language_code}_{script}`, for example `eng_Latn` - English (Latin script), `cmn_Hans` - Mandarin Chinese (Simplified), ...
103
 
104
+ ---
105
 
106
+ ## Training
107
 
108
+ To further finetune the released checkpoints on your own data, use our [data preparation guide](/workflows/dataprep/README.md) followed by the [finetuning recipe guide](/workflows/recipes/wav2vec2/asr/README.md).
109
 
110
+ ---
111
 
112
+ ## Citation
113
 
114
  **BibTeX:**
115
 
116
+ ```bibtex
117
+ @misc{omnilingualasr2025,
118
+ title={{Omnilingual ASR}: Open-Source Multilingual Speech Recognition for 1600+ Languages},
119
+ author={{Omnilingual ASR Team} and Keren, Gil and Kozhevnikov, Artyom and Meng, Yen and Ropers, Christophe and Setzler, Matthew and Wang, Skyler and Adebara, Ife and Auli, Michael and Can, Balioglu and Chan, Kevin and Cheng, Chierh and Chuang, Joe and Droof, Caley and Duppenthaler, Mark and Duquenne, Paul-Ambroise and Erben, Alexander and Gao, Cynthia and Mejia Gonzalez, Gabriel and Lyu, Kehan and Miglani, Sagar and Pratap, Vineel and Sadagopan, Kaushik Ram and Saleem, Safiyyah and Turkatenko, Arina and Ventayol-Boada, Albert and Yong, Zheng-Xin and Chung, Yu-An and Maillard, Jean and Moritz, Rashel and Mourachko, Alexandre and Williamson, Mary and Yates, Shireen},
120
+ year={2025},
121
+ url={https://ai.meta.com/research/publications/omnilingual-asr-open-source-multilingual-speech-recognition-for-1600-languages/},
122
+ }
123
+ ```
124
 
125
+ * **Developed by:** Meta AI / Omnilingual ASR Team([GitHub][1])
126
+ * **Model type:** End-to-end automatic speech recognition model (wav2vec2-style encoder with CTC head / encoder-decoder, depending on checkpoint).
127
+ * **Language(s) (NLP):** 1,600+ languages overall in Omnilingual ASR; this corpus release specifically covers **348 under-served languages** across many writing systems (Latin, Arabic, Devanagari, etc.).([GitHub][1])
128
+ * **License:** Apache-2.0 (for the model and code), CC-BY-4.0 for the `facebook/omnilingual-asr-corpus` dataset.([GitHub][1])
129
 
130
+ ---
 
 
 
 
 
 
131
 
132
+ [1]: https://github.com/facebookresearch/omnilingual-asr?tab=readme-ov-file "GitHub - facebookresearch/omnilingual-asr: Omnilingual ASR Open-Source Multilingual SpeechRecognition for 1600+ Languages"
133
+ [2]: https://huggingface.co/datasets/facebook/omnilingual-asr-corpus/blob/main/README.md "README.md · facebook/omnilingual-asr-corpus at main"
134
+ [3]: https://huggingface.co/datasets/facebook/omnilingual-asr-corpus?utm_source=chatgpt.com "facebook/omnilingual-asr-corpus · Datasets at ..."
135
+ [4]: https://venturebeat.com/ai/meta-returns-to-open-source-ai-with-omnilingual-asr-models-that-can?utm_source=chatgpt.com "Meta returns to open source AI with Omnilingual ASR ..."
136
+ [5]: https://huggingface.co/spaces/facebook/omniasr-transcriptions?utm_source=chatgpt.com "Omnilingual ASR Media Transcription"
137
+ [6]: https://huggingface.co/collections/bezzam/omnilingual-asr-1-600-languages?utm_source=chatgpt.com "Omnilingual ASR (1600+ Languages) - a bezzam Collection"
138
 
 
139