File size: 10,423 Bytes
5a4159a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
"""
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Modeling for ColQwen3 retrieval, aligned with the ColQwen2 reference implementation.
"""
from dataclasses import dataclass
from typing import Optional
from torch import nn
from transformers import AutoModelForImageTextToText
from transformers.configuration_utils import PretrainedConfig
from transformers.cache_utils import Cache
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, auto_docstring, can_return_tuple, is_torch_available, logging
from transformers.models.qwen3_vl.configuration_qwen3_vl import Qwen3VLConfig
from .configuration_colqwen3 import ColQwen3Config
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
@auto_docstring
class ColQwen3PreTrainedModel(PreTrainedModel):
config_class = ColQwen3Config
base_model_prefix = "model"
_no_split_modules = []
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else getattr(self.config.text_config, "initializer_range", 0.02)
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@dataclass
@auto_docstring(
custom_intro="""
Base class for ColQwen3 embeddings output.
"""
)
class ColQwen3ForRetrievalOutput(ModelOutput):
r"""
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The embeddings of the model.
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
It is a [`~cache_utils.Cache`] instance.
"""
loss: Optional[torch.FloatTensor] = None
embeddings: Optional[torch.Tensor] = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
@auto_docstring(
custom_intro="""
ColQwen3 retrieval model that mirrors the ColQwen2 late-interaction pipeline while using a Qwen3-VL backbone.
"""
)
class ColQwen3(ColQwen3PreTrainedModel):
_checkpoint_conversion_mapping = {
# Legacy checkpoints saved from a bare Qwen3VLModel (no `vlm.` nesting).
r"^model\.visual": "vlm.model.visual",
r"^model\.language_model": "vlm.model.language_model",
r"^model\.": "vlm.model.",
r"^visual": "vlm.model.visual",
r"^language_model": "vlm.model.language_model",
r"^custom_text_proj": "embedding_proj_layer",
}
config_class = ColQwen3Config
model_type = ColQwen3Config.model_type
def __init__(
self,
config: ColQwen3Config,
attn_impl: Optional[str] = None,
mask_non_image_embeddings: bool = False,
):
"""
Args:
config (ColQwen3Config): Configuration carrying nested vision/text configs for the retrieval model.
attn_impl (Optional[str], optional): Attention implementation forwarded to the VLM (e.g., "flash_attention_2"). Defaults to None.
mask_non_image_embeddings (bool, optional): If True, zero out non-image embeddings after projection. Defaults to False.
"""
super().__init__(config)
self.config = config
vision_cfg = (
config.vision_config.to_dict() if isinstance(config.vision_config, PretrainedConfig) else config.vision_config
)
text_cfg = config.text_config.to_dict() if isinstance(config.text_config, PretrainedConfig) else config.text_config
vlm_config = Qwen3VLConfig(
text_config=text_cfg,
vision_config=vision_cfg,
image_token_id=getattr(config, "image_token_id", 151655),
video_token_id=getattr(config, "video_token_id", 151656),
vision_start_token_id=getattr(config, "vision_start_token_id", 151652),
vision_end_token_id=getattr(config, "vision_end_token_id", 151653),
tie_word_embeddings=getattr(config.text_config, "tie_word_embeddings", False),
)
self.vlm = AutoModelForImageTextToText.from_config(vlm_config)
self.embedding_dim = self.config.embed_dim
self.embedding_proj_layer = nn.Linear(
self.vlm.config.text_config.hidden_size,
self.embedding_dim,
)
self.padding_side = getattr(config, "padding_side", "left")
self.mask_non_image_embeddings = mask_non_image_embeddings
self._tied_weights_keys = [f"vlm.{k}" for k in (self.vlm._tied_weights_keys or [])]
self.post_init()
if attn_impl is not None and hasattr(self.vlm, "set_attn_implementation"):
self.vlm.set_attn_implementation(attn_impl)
@classmethod
def from_pretrained(cls, *args, config: Optional[ColQwen3Config] = None, **kwargs):
key_mapping = kwargs.pop("key_mapping", None)
if key_mapping is None:
key_mapping = getattr(cls, "_checkpoint_conversion_mapping", None)
return super().from_pretrained(*args, config=config, **kwargs, key_mapping=key_mapping)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
pixel_values_videos: Optional[torch.Tensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
) -> ColQwen3ForRetrievalOutput:
r"""
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vlm_output = self.vlm.model(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
pixel_values_videos=pixel_values_videos,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
cache_position=cache_position,
)
vlm_hidden_states = vlm_output.hidden_states if output_hidden_states else None
last_hidden_states = vlm_output[0]
proj_dtype = self.embedding_proj_layer.weight.dtype
embeddings = self.embedding_proj_layer(last_hidden_states.to(proj_dtype))
denom = embeddings.norm(dim=-1, keepdim=True).clamp_min(torch.finfo(embeddings.dtype).eps)
embeddings = embeddings / denom
if attention_mask is not None:
embeddings = embeddings * attention_mask.unsqueeze(-1)
if pixel_values is not None and self.mask_non_image_embeddings:
image_mask = (input_ids == self.vlm.config.image_token_id).unsqueeze(-1)
embeddings = embeddings * image_mask
return ColQwen3ForRetrievalOutput(
embeddings=embeddings,
past_key_values=vlm_output.past_key_values,
hidden_states=vlm_hidden_states,
attentions=vlm_output.attentions,
)
def get_input_embeddings(self):
return self.vlm.get_input_embeddings()
def set_input_embeddings(self, value):
self.vlm.set_input_embeddings(value)
def get_output_embeddings(self):
return self.vlm.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.vlm.set_output_embeddings(new_embeddings)
def tie_weights(self):
return self.vlm.tie_weights()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
mean_resizing: bool = True,
) -> nn.Embedding:
model_embeds = self.vlm.resize_token_embeddings(
new_num_tokens=new_num_tokens,
pad_to_multiple_of=pad_to_multiple_of,
mean_resizing=mean_resizing,
)
self.vlm.config.text_config.vocab_size = model_embeds.num_embeddings
self.vlm.config.vocab_size = model_embeds.num_embeddings
return model_embeds
__all__ = ["ColQwen3", "ColQwen3PreTrainedModel", "ColQwen3ForRetrievalOutput"]
|