|
|
""" |
|
|
# Copyright 2025 The HuggingFace Inc. team. |
|
|
# |
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
# you may not use this file except in compliance with the License. |
|
|
# You may obtain a copy of the License at |
|
|
# |
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
# |
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
# See the License for the specific language governing permissions and |
|
|
# limitations under the License. |
|
|
|
|
|
Processing utilities for ColQwen3, aligned with the ColQwen2 reference implementation. |
|
|
""" |
|
|
|
|
|
import importlib |
|
|
import numpy as np |
|
|
from typing import Any, ClassVar, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
from PIL import Image |
|
|
from transformers import BatchEncoding |
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.image_utils import ImageInput, is_valid_image |
|
|
from transformers.processing_utils import AudioInput, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideoInput |
|
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
|
from transformers.utils import logging |
|
|
|
|
|
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
try: |
|
|
from fast_plaid import search |
|
|
except ImportError: |
|
|
logger.info( |
|
|
"FastPlaid is not installed.If you want to use it:Instal with `pip install --no-deps fast-plaid fastkmeans`" |
|
|
) |
|
|
|
|
|
|
|
|
def get_torch_device(device: str = "auto") -> str: |
|
|
"""Resolve a torch device string with a simple auto mode.""" |
|
|
if device == "auto": |
|
|
if torch.cuda.is_available(): |
|
|
device = "cuda:0" |
|
|
elif torch.backends.mps.is_available(): |
|
|
device = "mps" |
|
|
else: |
|
|
device = "cpu" |
|
|
return device |
|
|
|
|
|
|
|
|
class ColQwen3ProcessorKwargs(ProcessingKwargs, total=False): |
|
|
_defaults = { |
|
|
"text_kwargs": { |
|
|
"padding": "longest", |
|
|
}, |
|
|
"images_kwargs": { |
|
|
"data_format": "channels_first", |
|
|
"do_convert_rgb": True, |
|
|
}, |
|
|
"videos_kwargs": { |
|
|
"return_metadata": True, |
|
|
"data_format": "channels_first", |
|
|
"do_convert_rgb": True, |
|
|
}, |
|
|
"common_kwargs": {"return_tensors": "pt"}, |
|
|
} |
|
|
|
|
|
|
|
|
class ColQwen3Processor(ProcessorMixin): |
|
|
""" |
|
|
Constructs a ColQwen3 processor which wraps a Qwen3VLProcessor with retrieval-specific helpers. |
|
|
""" |
|
|
|
|
|
attributes = ["image_processor", "tokenizer", "video_processor"] |
|
|
image_processor_class = "AutoImageProcessor" |
|
|
video_processor_class = "AutoVideoProcessor" |
|
|
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
image_processor=None, |
|
|
tokenizer=None, |
|
|
video_processor=None, |
|
|
chat_template=None, |
|
|
visual_prompt_prefix: Optional[str] = None, |
|
|
visual_prompt_suffix: Optional[str] = None, |
|
|
video_prompt_prefix: Optional[str] = None, |
|
|
video_prompt_suffix: Optional[str] = None, |
|
|
query_prefix: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template, **kwargs) |
|
|
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token |
|
|
self.image_token_id = ( |
|
|
tokenizer.image_token_id |
|
|
if getattr(tokenizer, "image_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.image_token) |
|
|
) |
|
|
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token |
|
|
self.video_token_id = ( |
|
|
tokenizer.video_token_id |
|
|
if getattr(tokenizer, "video_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.video_token) |
|
|
) |
|
|
self.vision_start_token = ( |
|
|
"<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token |
|
|
) |
|
|
self.vision_end_token = ( |
|
|
"<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token |
|
|
) |
|
|
self.vision_start_token_id = ( |
|
|
tokenizer.vision_start_token_id |
|
|
if getattr(tokenizer, "vision_start_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.vision_start_token) |
|
|
) |
|
|
self.vision_end_token_id = ( |
|
|
tokenizer.vision_end_token_id |
|
|
if getattr(tokenizer, "vision_end_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.vision_end_token) |
|
|
) |
|
|
|
|
|
if visual_prompt_prefix is None: |
|
|
visual_prompt_prefix = ( |
|
|
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image." |
|
|
) |
|
|
self.visual_prompt_prefix = visual_prompt_prefix |
|
|
if visual_prompt_suffix is None: |
|
|
visual_prompt_suffix = "<|im_end|><|endoftext|>" |
|
|
self.visual_prompt_suffix = visual_prompt_suffix |
|
|
|
|
|
if video_prompt_prefix is None: |
|
|
video_prompt_prefix = ( |
|
|
"<|im_start|>user\n<|vision_start|><|video_pad|><|vision_end|>Describe the video." |
|
|
) |
|
|
self.video_prompt_prefix = video_prompt_prefix |
|
|
if video_prompt_suffix is None: |
|
|
video_prompt_suffix = "<|im_end|><|endoftext|>" |
|
|
self.video_prompt_suffix = video_prompt_suffix |
|
|
|
|
|
if query_prefix is None: |
|
|
query_prefix = "" |
|
|
self.query_prefix = query_prefix |
|
|
self.tokenizer.padding_side = "left" |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained( |
|
|
cls, |
|
|
*args: Any, |
|
|
max_num_visual_tokens: int = 1280, |
|
|
**kwargs: Any, |
|
|
) -> "ColQwen3Processor": |
|
|
instance = super().from_pretrained( |
|
|
*args, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
patch_size = getattr(instance.image_processor, "patch_size", None) |
|
|
merge_size = getattr(instance.image_processor, "merge_size", None) or getattr( |
|
|
instance.image_processor, "spatial_merge_size", None |
|
|
) |
|
|
if patch_size is None or merge_size is None: |
|
|
raise ValueError("Qwen3VL image processor is missing `patch_size` or `merge_size`/`spatial_merge_size`.") |
|
|
tile = patch_size * merge_size |
|
|
instance.image_processor.max_pixels = max_num_visual_tokens * tile * tile |
|
|
instance.image_processor.size["longest_edge"] = instance.image_processor.max_pixels |
|
|
|
|
|
video_patch_size = getattr(instance.video_processor, "patch_size", None) |
|
|
video_merge_size = getattr(instance.video_processor, "merge_size", None) or getattr( |
|
|
instance.video_processor, "spatial_merge_size", None |
|
|
) |
|
|
video_temporal_patch_size = getattr(instance.video_processor, "temporal_patch_size", None) |
|
|
if video_patch_size is None or video_merge_size is None or video_temporal_patch_size is None: |
|
|
raise ValueError( |
|
|
"Qwen3VL video processor is missing `patch_size`, `merge_size`/`spatial_merge_size`, or `temporal_patch_size`." |
|
|
) |
|
|
video_tile = video_patch_size * video_merge_size |
|
|
|
|
|
instance.video_processor.max_pixels = max_num_visual_tokens * video_tile * video_tile * video_temporal_patch_size |
|
|
instance.video_processor.size["longest_edge"] = instance.video_processor.max_pixels |
|
|
|
|
|
return instance |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
images: Optional[ImageInput] = None, |
|
|
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, |
|
|
audio: Optional[AudioInput] = None, |
|
|
videos: Optional[VideoInput] = None, |
|
|
**kwargs: Unpack[ColQwen3ProcessorKwargs], |
|
|
) -> BatchFeature: |
|
|
output_kwargs = self._merge_kwargs( |
|
|
ColQwen3ProcessorKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
suffix = output_kwargs["text_kwargs"].pop("suffix", None) |
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None) |
|
|
|
|
|
if images is not None and videos is not None: |
|
|
raise ValueError("Provide only one of `images` or `videos`, not both.") |
|
|
|
|
|
|
|
|
text_list: list[str] = [] |
|
|
if text is not None: |
|
|
if isinstance(text, str): |
|
|
text_list = [text] |
|
|
elif isinstance(text, list): |
|
|
if len(text) == 0 or not all(isinstance(t, (str, type(None))) for t in text): |
|
|
raise ValueError("Text must be a string or a list of strings.") |
|
|
text_list = [t or "" for t in text] |
|
|
else: |
|
|
raise ValueError("Text must be a string or a list of strings") |
|
|
|
|
|
|
|
|
image_list: Optional[list[Any]] = None |
|
|
if images is not None: |
|
|
raw_images = images if isinstance(images, list) else [images] |
|
|
image_list = [] |
|
|
for idx, img_item in enumerate(raw_images): |
|
|
if img_item is None: |
|
|
image_list.append([]) |
|
|
elif is_valid_image(img_item): |
|
|
image_list.append([img_item]) |
|
|
elif isinstance(img_item, list): |
|
|
if not img_item: |
|
|
image_list.append([]) |
|
|
continue |
|
|
for sub_idx, sub_img in enumerate(img_item): |
|
|
if not is_valid_image(sub_img): |
|
|
raise ValueError(f"Image at position {idx}[{sub_idx}] is not a valid image.") |
|
|
image_list.append(list(img_item)) |
|
|
else: |
|
|
raise ValueError("images must be an image, list of images or list of list of images") |
|
|
|
|
|
|
|
|
video_list: Optional[list[Any]] = None |
|
|
if videos is not None: |
|
|
raw_videos = list(videos) if isinstance(videos, (list, tuple)) else [videos] |
|
|
video_list = [] |
|
|
for idx, vid_item in enumerate(raw_videos): |
|
|
if vid_item is None: |
|
|
video_list.append([]) |
|
|
elif isinstance(vid_item, list): |
|
|
video_list.append(list(vid_item)) |
|
|
else: |
|
|
video_list.append([vid_item]) |
|
|
|
|
|
if image_list is None and video_list is None and not text_list: |
|
|
raise ValueError("Either text, images or videos must be provided") |
|
|
|
|
|
|
|
|
if image_list is not None: |
|
|
if not text_list: |
|
|
text_list = [""] * len(image_list) |
|
|
elif len(text_list) == 1 and len(image_list) > 1: |
|
|
text_list = text_list * len(image_list) |
|
|
elif len(text_list) != len(image_list): |
|
|
raise ValueError("When providing both images and text, their lengths must match.") |
|
|
num_items = len(image_list) |
|
|
elif video_list is not None: |
|
|
if not text_list: |
|
|
text_list = [""] * len(video_list) |
|
|
elif len(text_list) == 1 and len(video_list) > 1: |
|
|
text_list = text_list * len(video_list) |
|
|
elif len(text_list) != len(video_list): |
|
|
raise ValueError("When providing both videos and text, their lengths must match.") |
|
|
num_items = len(video_list) |
|
|
else: |
|
|
num_items = len(text_list) |
|
|
|
|
|
if num_items == 0: |
|
|
raise ValueError("Either text, images or videos must be provided") |
|
|
|
|
|
prompts: list[str] = [] |
|
|
query_suffix = suffix if suffix is not None else self.query_augmentation_token * 10 |
|
|
|
|
|
for idx in range(num_items): |
|
|
extra_text = (text_list[idx] if idx < len(text_list) else "") or "" |
|
|
extra_text = extra_text.strip() |
|
|
has_image = image_list is not None and len(image_list[idx]) > 0 |
|
|
has_video = video_list is not None and len(video_list[idx]) > 0 |
|
|
if has_image and has_video: |
|
|
raise ValueError("Provide only one of `images` or `videos` per item.") |
|
|
|
|
|
if has_image: |
|
|
prompt = ( |
|
|
f"{self.visual_prompt_prefix} {extra_text}{self.visual_prompt_suffix}" |
|
|
if extra_text |
|
|
else f"{self.visual_prompt_prefix}{self.visual_prompt_suffix}" |
|
|
) |
|
|
prompts.append(prompt) |
|
|
elif has_video: |
|
|
prompt = ( |
|
|
f"{self.video_prompt_prefix} {extra_text}{self.video_prompt_suffix}" |
|
|
if extra_text |
|
|
else f"{self.video_prompt_prefix}{self.video_prompt_suffix}" |
|
|
) |
|
|
prompts.append(prompt) |
|
|
else: |
|
|
prompt = self.query_prefix + extra_text + query_suffix |
|
|
prompts.append(prompt) |
|
|
|
|
|
|
|
|
image_inputs: dict[str, Any] = {} |
|
|
image_grid_thw = None |
|
|
if image_list is not None: |
|
|
normalized_images: list[list[Image.Image]] = [] |
|
|
for idx, img_group in enumerate(image_list): |
|
|
converted_list: list[Image.Image] = [] |
|
|
for sub_idx, sub_img in enumerate(img_group): |
|
|
if not is_valid_image(sub_img): |
|
|
raise ValueError(f"Image at position {idx}[{sub_idx}] is not a valid image.") |
|
|
converted_list.append(sub_img.convert("RGB") if hasattr(sub_img, "convert") else sub_img) |
|
|
normalized_images.append(converted_list) |
|
|
|
|
|
image_inputs = self.image_processor(images=normalized_images, **output_kwargs["images_kwargs"]) |
|
|
image_grid_thw = image_inputs["image_grid_thw"] |
|
|
|
|
|
|
|
|
videos_inputs: dict[str, Any] = {} |
|
|
video_grid_thw = None |
|
|
video_metadata = None |
|
|
if video_list is not None: |
|
|
videos_inputs = self.video_processor(videos=video_list, **output_kwargs["videos_kwargs"]) |
|
|
video_grid_thw = videos_inputs["video_grid_thw"] |
|
|
if "return_metadata" not in output_kwargs["videos_kwargs"]: |
|
|
video_metadata = videos_inputs.pop("video_metadata") |
|
|
else: |
|
|
video_metadata = videos_inputs["video_metadata"] |
|
|
|
|
|
|
|
|
text_prompts = prompts.copy() |
|
|
if image_grid_thw is not None: |
|
|
merge_size = getattr(self.image_processor, "merge_size", None) or getattr( |
|
|
self.image_processor, "spatial_merge_size", None |
|
|
) |
|
|
if merge_size is None: |
|
|
raise ValueError("Qwen3VL image processor is missing `merge_size`/`spatial_merge_size`.") |
|
|
merge_length = merge_size**2 |
|
|
index = 0 |
|
|
for i in range(len(text_prompts)): |
|
|
while self.image_token in text_prompts[i]: |
|
|
if index >= len(image_grid_thw): |
|
|
raise ValueError("Number of image tokens does not match provided images.") |
|
|
num_image_tokens = image_grid_thw[index].prod() // merge_length |
|
|
text_prompts[i] = text_prompts[i].replace( |
|
|
self.image_token, "<|placeholder|>" * num_image_tokens, 1 |
|
|
) |
|
|
index += 1 |
|
|
text_prompts[i] = text_prompts[i].replace("<|placeholder|>", self.image_token) |
|
|
|
|
|
if video_grid_thw is not None: |
|
|
merge_size = getattr(self.video_processor, "merge_size", None) |
|
|
if merge_size is None: |
|
|
raise ValueError("Qwen3VL video processor is missing `merge_size`.") |
|
|
merge_length = merge_size**2 |
|
|
index = 0 |
|
|
for i in range(len(text_prompts)): |
|
|
while self.video_token in text_prompts[i]: |
|
|
if video_metadata is None or index >= len(video_metadata): |
|
|
raise ValueError("Video metadata is required to build video prompts.") |
|
|
metadata = video_metadata[index] |
|
|
if metadata.fps is None: |
|
|
logger.warning_once( |
|
|
"Qwen3VL requires frame timestamps to construct prompts, but the `fps` of the input video could " |
|
|
"not be inferred. Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results." |
|
|
) |
|
|
metadata.fps = 24 if metadata.fps is None else metadata.fps |
|
|
|
|
|
curr_timestamp = self._calculate_timestamps( |
|
|
metadata.frames_indices, metadata.fps, self.video_processor.merge_size |
|
|
) |
|
|
frame_seqlen = int(video_grid_thw[index][1:].prod().item() // merge_length) |
|
|
video_placeholder = "" |
|
|
for frame_idx in range(int(video_grid_thw[index][0])): |
|
|
curr_time = curr_timestamp[frame_idx] |
|
|
video_placeholder += f"<{curr_time:.1f} seconds>" |
|
|
video_placeholder += ( |
|
|
self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token |
|
|
) |
|
|
|
|
|
if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text_prompts[i]: |
|
|
text_prompts[i] = text_prompts[i].replace( |
|
|
f"{self.vision_start_token}{self.video_token}{self.vision_end_token}", |
|
|
video_placeholder, |
|
|
1, |
|
|
) |
|
|
else: |
|
|
text_prompts[i] = text_prompts[i].replace(self.video_token, video_placeholder, 1) |
|
|
index += 1 |
|
|
|
|
|
text_prompts[i] = text_prompts[i].replace("<|placeholder|>", self.video_token) |
|
|
|
|
|
text_inputs = self.tokenizer(text_prompts, **output_kwargs["text_kwargs"]) |
|
|
self._check_special_mm_tokens(text_prompts, text_inputs, modalities=["image", "video"]) |
|
|
|
|
|
if return_mm_token_type_ids: |
|
|
array_ids = np.array(text_inputs["input_ids"]) |
|
|
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"]) |
|
|
mm_token_type_ids[array_ids == self.image_token_id] = 1 |
|
|
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist() |
|
|
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors) |
|
|
|
|
|
def process_images( |
|
|
self, |
|
|
images: List[Image.Image], |
|
|
) -> Union[BatchFeature, BatchEncoding]: |
|
|
images = [image.convert("RGB") for image in images] |
|
|
return self(images=images, padding="longest", return_tensors="pt") |
|
|
|
|
|
def process_texts(self, texts: List[str]) -> Union[BatchFeature, BatchEncoding]: |
|
|
return self(text=texts, return_tensors="pt", padding="longest") |
|
|
|
|
|
|
|
|
@staticmethod |
|
|
def _split_batch_feature(batch_feature: BatchFeature) -> list[BatchFeature]: |
|
|
|
|
|
length: Optional[int] = None |
|
|
for value in batch_feature.values(): |
|
|
if hasattr(value, "__len__"): |
|
|
try: |
|
|
length = len(value) |
|
|
except Exception: |
|
|
continue |
|
|
if length is not None: |
|
|
break |
|
|
|
|
|
if length is None: |
|
|
return [batch_feature] |
|
|
|
|
|
items: list[BatchFeature] = [] |
|
|
for idx in range(length): |
|
|
data = {} |
|
|
for key, value in batch_feature.items(): |
|
|
try: |
|
|
data[key] = value[idx] |
|
|
except Exception: |
|
|
data[key] = value |
|
|
items.append(BatchFeature(data=data)) |
|
|
return items |
|
|
|
|
|
@staticmethod |
|
|
def _merge_batch_features(features: list[BatchFeature]) -> BatchFeature: |
|
|
if not features: |
|
|
return BatchFeature() |
|
|
|
|
|
all_keys = set() |
|
|
for feat in features: |
|
|
all_keys.update(feat.keys()) |
|
|
|
|
|
merged: dict[str, list[Any]] = {key: [] for key in all_keys} |
|
|
for feat in features: |
|
|
for key in all_keys: |
|
|
merged[key].append(feat.get(key)) |
|
|
|
|
|
combined: dict[str, Any] = {} |
|
|
for key, values in merged.items(): |
|
|
|
|
|
if all(isinstance(v, torch.Tensor) for v in values): |
|
|
try: |
|
|
combined[key] = torch.stack(values) |
|
|
continue |
|
|
except Exception: |
|
|
|
|
|
pass |
|
|
combined[key] = values |
|
|
|
|
|
return BatchFeature(data=combined) |
|
|
|
|
|
def score_retrieval( |
|
|
self, |
|
|
qs: List[torch.Tensor], |
|
|
ps: List[torch.Tensor], |
|
|
score_batch_size: int = 128, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
return self.score_multi_vector(qs, ps, batch_size=score_batch_size, device=device, **kwargs) |
|
|
|
|
|
@staticmethod |
|
|
def score_single_vector( |
|
|
qs: Union[torch.Tensor, List[torch.Tensor]], |
|
|
ps: Union[torch.Tensor, List[torch.Tensor]], |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Compute the dot product score for the given single-vector query and passage embeddings. |
|
|
""" |
|
|
device = device or get_torch_device("auto") |
|
|
|
|
|
if isinstance(qs, list) and isinstance(ps, list): |
|
|
if len(qs) == 0: |
|
|
raise ValueError("No queries provided") |
|
|
if len(ps) == 0: |
|
|
raise ValueError("No passages provided") |
|
|
|
|
|
qs = torch.stack(qs).to(device) |
|
|
ps = torch.stack(ps).to(device) |
|
|
else: |
|
|
qs = qs.to(device) |
|
|
ps = ps.to(device) |
|
|
|
|
|
scores = torch.einsum("bd,cd->bc", qs, ps) |
|
|
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" |
|
|
|
|
|
scores = scores.to(torch.float32) |
|
|
return scores |
|
|
|
|
|
@staticmethod |
|
|
def score_multi_vector( |
|
|
qs: Union[torch.Tensor, List[torch.Tensor]], |
|
|
ps: Union[torch.Tensor, List[torch.Tensor]], |
|
|
batch_size: int = 128, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector |
|
|
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the |
|
|
image of a document page. |
|
|
|
|
|
Because the embedding tensors are multi-vector and can thus have different shapes, they |
|
|
should be fed as: |
|
|
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim) |
|
|
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually |
|
|
obtained by padding the list of tensors. |
|
|
|
|
|
Args: |
|
|
qs (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings. |
|
|
ps (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings. |
|
|
batch_size (`int`, *optional*): Batch size for computing scores. |
|
|
device (`Union[str, torch.device]`, *optional*): Device to use for computation. If not |
|
|
provided, uses `get_torch_device("auto")`. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score |
|
|
tensor is saved on the "cpu" device. |
|
|
""" |
|
|
device = device or get_torch_device("auto") |
|
|
|
|
|
if len(qs) == 0: |
|
|
raise ValueError("No queries provided") |
|
|
if len(ps) == 0: |
|
|
raise ValueError("No passages provided") |
|
|
|
|
|
scores_list: List[torch.Tensor] = [] |
|
|
|
|
|
for i in range(0, len(qs), batch_size): |
|
|
scores_batch = [] |
|
|
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to( |
|
|
device |
|
|
) |
|
|
for j in range(0, len(ps), batch_size): |
|
|
ps_batch = torch.nn.utils.rnn.pad_sequence( |
|
|
ps[j : j + batch_size], batch_first=True, padding_value=0 |
|
|
).to(device) |
|
|
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) |
|
|
scores_batch = torch.cat(scores_batch, dim=1).cpu() |
|
|
scores_list.append(scores_batch) |
|
|
|
|
|
scores = torch.cat(scores_list, dim=0) |
|
|
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" |
|
|
|
|
|
scores = scores.to(torch.float32) |
|
|
return scores |
|
|
|
|
|
@staticmethod |
|
|
def get_topk_plaid( |
|
|
qs: Union[torch.Tensor, List[torch.Tensor]], |
|
|
plaid_index: "search.FastPlaid", |
|
|
k: int = 10, |
|
|
batch_size: int = 128, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Experimental: Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector |
|
|
query embeddings (`qs`) and passage embeddings endoded in a plaid index. For ColPali, a passage is the |
|
|
image of a document page. |
|
|
""" |
|
|
device = device or get_torch_device("auto") |
|
|
|
|
|
if len(qs) == 0: |
|
|
raise ValueError("No queries provided") |
|
|
|
|
|
scores_list: List[torch.Tensor] = [] |
|
|
|
|
|
for i in range(0, len(qs), batch_size): |
|
|
scores_batch = [] |
|
|
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to( |
|
|
device |
|
|
) |
|
|
scores_batch = plaid_index.search( |
|
|
queries_embeddings=qs_batch.to(torch.float32), |
|
|
top_k=k, |
|
|
) |
|
|
scores_list.append(scores_batch) |
|
|
|
|
|
return scores_list |
|
|
|
|
|
@staticmethod |
|
|
def create_plaid_index( |
|
|
ps: Union[torch.Tensor, List[torch.Tensor]], |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Experimental: Create a FastPlaid index from the given passage embeddings. |
|
|
Args: |
|
|
ps (`Union[torch.Tensor, List[torch.Tensor]]`): Passage embeddings. Should be a list of tensors, |
|
|
where each tensor is of shape (sequence_length_i, embedding_dim). |
|
|
device (`Optional[Union[str, torch.device]]`, *optional*): Device to use for computation. If not |
|
|
provided, uses `get_torch_device("auto")`. |
|
|
""" |
|
|
if not importlib.util.find_spec("fast_plaid"): |
|
|
raise ImportError("FastPlaid is not installed. Please install it with `pip install fast-plaid`.") |
|
|
|
|
|
fast_plaid_index = search.FastPlaid(index="index") |
|
|
device = device or get_torch_device("auto") |
|
|
fast_plaid_index.create(documents_embeddings=[d.to(device).to(torch.float32) for d in ps]) |
|
|
return fast_plaid_index |
|
|
|
|
|
def get_n_patches( |
|
|
self, |
|
|
image_size: Tuple[int, int], |
|
|
spatial_merge_size: int, |
|
|
) -> Tuple[int, int]: |
|
|
""" |
|
|
Get the number of patches (n_patches_x, n_patches_y) that will be used to process an image of |
|
|
size (height, width) with the given patch size. |
|
|
|
|
|
The `spatial_merge_size` is the number of patches that will be merged spatially. It is stored in |
|
|
as a `Qwen2VLForConditionalGeneration` attribute under `model.spatial_merge_size`. |
|
|
""" |
|
|
patch_size = self.image_processor.patch_size |
|
|
|
|
|
height_new, width_new = smart_resize( |
|
|
width=image_size[0], |
|
|
height=image_size[1], |
|
|
factor=patch_size * self.image_processor.merge_size, |
|
|
min_pixels=self.image_processor.size["shortest_edge"], |
|
|
max_pixels=self.image_processor.size["longest_edge"], |
|
|
) |
|
|
|
|
|
n_patches_x = width_new // patch_size // spatial_merge_size |
|
|
n_patches_y = height_new // patch_size // spatial_merge_size |
|
|
|
|
|
return n_patches_x, n_patches_y |
|
|
|
|
|
def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor: |
|
|
return batch_images.input_ids == self.image_token_id |
|
|
|
|
|
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): |
|
|
vision_data = {} |
|
|
if image_sizes is not None: |
|
|
images_kwargs = ColQwen3ProcessorKwargs._defaults.get("images_kwargs", {}) |
|
|
images_kwargs.update(kwargs) |
|
|
merge_size = images_kwargs.get("merge_size", None) or getattr( |
|
|
self.image_processor, "merge_size", None |
|
|
) or getattr(self.image_processor, "spatial_merge_size", None) |
|
|
if merge_size is None: |
|
|
raise ValueError("Qwen3VL image processor is missing `merge_size`/`spatial_merge_size`.") |
|
|
|
|
|
num_image_patches = [ |
|
|
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs) |
|
|
for image_size in image_sizes |
|
|
] |
|
|
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches] |
|
|
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches}) |
|
|
|
|
|
video_sizes = kwargs.pop("video_sizes", None) |
|
|
if video_sizes is not None: |
|
|
videos_kwargs = ColQwen3ProcessorKwargs._defaults.get("videos_kwargs", {}) |
|
|
videos_kwargs.update(kwargs) |
|
|
merge_size = videos_kwargs.get("merge_size", None) or getattr(self.video_processor, "merge_size", None) |
|
|
if merge_size is None: |
|
|
raise ValueError("Qwen3VL video processor is missing `merge_size`.") |
|
|
|
|
|
num_video_patches = [ |
|
|
self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs) for video_size in video_sizes |
|
|
] |
|
|
num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches] |
|
|
vision_data.update({"num_video_tokens": num_video_tokens, "num_video_patches": num_video_patches}) |
|
|
|
|
|
return MultiModalData(**vision_data) |
|
|
|
|
|
@property |
|
|
def model_input_names(self) -> list[str]: |
|
|
return [ |
|
|
"input_ids", |
|
|
"attention_mask", |
|
|
"pixel_values", |
|
|
"image_grid_thw", |
|
|
"pixel_values_videos", |
|
|
"video_grid_thw", |
|
|
] |
|
|
|
|
|
@property |
|
|
def query_augmentation_token(self) -> str: |
|
|
return self.tokenizer.pad_token |
|
|
|
|
|
def get_video_mask(self, batch_videos: BatchFeature) -> torch.Tensor: |
|
|
return batch_videos.input_ids == self.video_token_id |
|
|
|
|
|
def _calculate_timestamps( |
|
|
self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2 |
|
|
) -> list[float]: |
|
|
if not isinstance(indices, list): |
|
|
indices = indices.tolist() |
|
|
if len(indices) % merge_size != 0: |
|
|
indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size)) |
|
|
timestamps = [idx / video_fps for idx in indices] |
|
|
timestamps = [ |
|
|
(timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size) |
|
|
] |
|
|
return timestamps |
|
|
|
|
|
|
|
|
__all__ = ["ColQwen3Processor", "ColQwen3ProcessorKwargs"] |
|
|
|