Update README
Browse files
README.md
CHANGED
|
@@ -1,199 +1,135 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
### Model Sources
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
-
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
## Technical Specifications
|
| 154 |
|
| 155 |
### Model Architecture and Objective
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
[
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- text-classification
|
| 5 |
+
- spam-detection
|
| 6 |
+
- sms
|
| 7 |
+
license: apache-2.0
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# π‘οΈ Model Card for `alusci/distilbert-smsafe`
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
A lightweight DistilBERT model fine-tuned for spam detection in SMS messages. The model classifies input messages as either **spam** or **ham** (not spam), using a custom dataset of real-world OTP (One-Time Password) and spam SMS messages.
|
| 13 |
|
| 14 |
+
---
|
| 15 |
|
| 16 |
## Model Details
|
| 17 |
|
| 18 |
### Model Description
|
| 19 |
|
| 20 |
+
- **Developed by:** [alusci](https://huggingface.co/alusci)
|
| 21 |
+
- **Model type:** Transformer-based binary classifier
|
| 22 |
+
- **Language(s):** English
|
| 23 |
+
- **License:** Apache 2.0
|
| 24 |
+
- **Finetuned from model:** `distilbert-base-uncased`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
### Model Sources
|
| 27 |
|
| 28 |
+
- **Repository:** [https://huggingface.co/alusci/distilbert-smsafe](https://huggingface.co/alusci/distilbert-smsafe)
|
| 29 |
|
| 30 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
## π οΈ Uses
|
| 33 |
|
| 34 |
### Direct Use
|
| 35 |
|
| 36 |
+
- Detect whether an SMS message is spam or ham (OTP or not).
|
| 37 |
+
- Useful in prototypes, educational settings, or lightweight filtering applications.
|
|
|
|
| 38 |
|
| 39 |
+
```python
|
| 40 |
+
from transformers import pipeline
|
| 41 |
|
| 42 |
+
classifier = pipeline("text-classification", model="alusci/distilbert-smsafe")
|
| 43 |
+
result = classifier("Your verification code is 123456. Please do not share it with anyone.")
|
| 44 |
|
| 45 |
+
# Optional: map the label to human-readable terms
|
| 46 |
+
label_map = {"LABEL_0": "ham", "LABEL_1": "spam"}
|
| 47 |
+
print(f"Label: {label_map[result[0]['label']]} - Score: {result[0]['score']:.2f}")
|
| 48 |
+
```
|
| 49 |
|
| 50 |
### Out-of-Scope Use
|
| 51 |
|
| 52 |
+
- Not intended for email spam detection or multilingual message filtering.
|
| 53 |
+
- Not suitable for production environments without further testing and evaluation.
|
| 54 |
|
| 55 |
+
---
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
## π§ͺ Bias, Risks, and Limitations
|
| 58 |
|
| 59 |
+
- The model may reflect dataset biases (e.g., message structure, language patterns).
|
| 60 |
+
- It may misclassify legitimate OTPs or non-standard spam content.
|
| 61 |
+
- Risk of false positives in edge cases.
|
| 62 |
|
| 63 |
### Recommendations
|
| 64 |
|
| 65 |
+
- Evaluate on your own SMS dataset before deployment.
|
| 66 |
+
- Consider combining with rule-based or heuristic systems in production.
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
---
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
## π Training Details
|
| 71 |
|
| 72 |
### Training Data
|
| 73 |
|
| 74 |
+
- Dataset used: [`alusci/sms-otp-spam-dataset`](https://huggingface.co/datasets/alusci/sms-otp-spam-dataset)
|
| 75 |
+
- Binary labels for spam and non-spam OTP messages
|
|
|
|
| 76 |
|
| 77 |
### Training Procedure
|
| 78 |
|
| 79 |
+
- **Epochs:** 5
|
| 80 |
+
- **Batch Size:** 16 (assumed)
|
| 81 |
+
- **Loss Function:** CrossEntropyLoss
|
| 82 |
+
- **Optimizer:** AdamW
|
| 83 |
+
- **Tokenizer:** `distilbert-base-uncased`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
## π Evaluation
|
| 88 |
|
| 89 |
+
### Metrics
|
| 90 |
|
| 91 |
+
- Accuracy, Precision, Recall, F1-score on held-out validation set
|
| 92 |
+
- Binary classification labels:
|
| 93 |
+
- `LABEL_0` β ham
|
| 94 |
+
- `LABEL_1` β spam
|
| 95 |
|
| 96 |
### Results
|
| 97 |
|
| 98 |
+
**Evaluation metrics after 5 epochs:**
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
- **Loss:** 0.2962
|
| 101 |
+
- **Accuracy:** 91.35%
|
| 102 |
+
- **Precision:** 90.26%
|
| 103 |
+
- **Recall:** 100.00%
|
| 104 |
+
- **F1-score:** 94.88%
|
| 105 |
|
| 106 |
+
**Performance:**
|
| 107 |
|
| 108 |
+
- **Evaluation runtime:** 4.37 seconds
|
| 109 |
+
- **Samples/sec:** 457.27
|
| 110 |
+
- **Steps/sec:** 9.15
|
| 111 |
|
| 112 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
## π± Environmental Impact
|
| 115 |
|
| 116 |
+
- **Hardware Type:** Apple Silicon MPS GPU (Mac)
|
| 117 |
+
- **Hours used:** <1 hour (small dataset)
|
| 118 |
+
- **Cloud Provider:** None (trained locally)
|
| 119 |
+
- **Carbon Emitted:** Minimal due to local and efficient hardware
|
| 120 |
|
| 121 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
## π§ Technical Specifications
|
| 124 |
|
| 125 |
### Model Architecture and Objective
|
| 126 |
|
| 127 |
+
- **Base:** DistilBERT
|
| 128 |
+
- **Objective:** Binary classification head on pooled output
|
| 129 |
+
- **Parameters:** ~66M (same as distilbert)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
## π¬ Model Card Contact
|
| 134 |
|
| 135 |
+
For questions or feedback, please contact via [Hugging Face profile](https://huggingface.co/alusci).
|