alusci commited on
Commit
a630b04
Β·
verified Β·
1 Parent(s): 52ccabb

Update README

Browse files
Files changed (1) hide show
  1. README.md +76 -140
README.md CHANGED
@@ -1,199 +1,135 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-classification
5
+ - spam-detection
6
+ - sms
7
+ license: apache-2.0
8
  ---
9
 
10
+ # πŸ›‘οΈ Model Card for `alusci/distilbert-smsafe`
 
 
11
 
12
+ A lightweight DistilBERT model fine-tuned for spam detection in SMS messages. The model classifies input messages as either **spam** or **ham** (not spam), using a custom dataset of real-world OTP (One-Time Password) and spam SMS messages.
13
 
14
+ ---
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
+ - **Developed by:** [alusci](https://huggingface.co/alusci)
21
+ - **Model type:** Transformer-based binary classifier
22
+ - **Language(s):** English
23
+ - **License:** Apache 2.0
24
+ - **Finetuned from model:** `distilbert-base-uncased`
 
 
 
 
 
 
25
 
26
+ ### Model Sources
27
 
28
+ - **Repository:** [https://huggingface.co/alusci/distilbert-smsafe](https://huggingface.co/alusci/distilbert-smsafe)
29
 
30
+ ---
 
 
 
 
31
 
32
+ ## πŸ› οΈ Uses
33
 
34
  ### Direct Use
35
 
36
+ - Detect whether an SMS message is spam or ham (OTP or not).
37
+ - Useful in prototypes, educational settings, or lightweight filtering applications.
 
38
 
39
+ ```python
40
+ from transformers import pipeline
41
 
42
+ classifier = pipeline("text-classification", model="alusci/distilbert-smsafe")
43
+ result = classifier("Your verification code is 123456. Please do not share it with anyone.")
44
 
45
+ # Optional: map the label to human-readable terms
46
+ label_map = {"LABEL_0": "ham", "LABEL_1": "spam"}
47
+ print(f"Label: {label_map[result[0]['label']]} - Score: {result[0]['score']:.2f}")
48
+ ```
49
 
50
  ### Out-of-Scope Use
51
 
52
+ - Not intended for email spam detection or multilingual message filtering.
53
+ - Not suitable for production environments without further testing and evaluation.
54
 
55
+ ---
 
 
56
 
57
+ ## πŸ§ͺ Bias, Risks, and Limitations
58
 
59
+ - The model may reflect dataset biases (e.g., message structure, language patterns).
60
+ - It may misclassify legitimate OTPs or non-standard spam content.
61
+ - Risk of false positives in edge cases.
62
 
63
  ### Recommendations
64
 
65
+ - Evaluate on your own SMS dataset before deployment.
66
+ - Consider combining with rule-based or heuristic systems in production.
 
 
 
67
 
68
+ ---
 
 
69
 
70
+ ## πŸ“š Training Details
71
 
72
  ### Training Data
73
 
74
+ - Dataset used: [`alusci/sms-otp-spam-dataset`](https://huggingface.co/datasets/alusci/sms-otp-spam-dataset)
75
+ - Binary labels for spam and non-spam OTP messages
 
76
 
77
  ### Training Procedure
78
 
79
+ - **Epochs:** 5
80
+ - **Batch Size:** 16 (assumed)
81
+ - **Loss Function:** CrossEntropyLoss
82
+ - **Optimizer:** AdamW
83
+ - **Tokenizer:** `distilbert-base-uncased`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
+ ---
 
 
 
 
86
 
87
+ ## πŸ“ˆ Evaluation
88
 
89
+ ### Metrics
90
 
91
+ - Accuracy, Precision, Recall, F1-score on held-out validation set
92
+ - Binary classification labels:
93
+ - `LABEL_0` β†’ ham
94
+ - `LABEL_1` β†’ spam
95
 
96
  ### Results
97
 
98
+ **Evaluation metrics after 5 epochs:**
 
 
99
 
100
+ - **Loss:** 0.2962
101
+ - **Accuracy:** 91.35%
102
+ - **Precision:** 90.26%
103
+ - **Recall:** 100.00%
104
+ - **F1-score:** 94.88%
105
 
106
+ **Performance:**
107
 
108
+ - **Evaluation runtime:** 4.37 seconds
109
+ - **Samples/sec:** 457.27
110
+ - **Steps/sec:** 9.15
111
 
112
+ ---
 
 
 
 
113
 
114
+ ## 🌱 Environmental Impact
115
 
116
+ - **Hardware Type:** Apple Silicon MPS GPU (Mac)
117
+ - **Hours used:** <1 hour (small dataset)
118
+ - **Cloud Provider:** None (trained locally)
119
+ - **Carbon Emitted:** Minimal due to local and efficient hardware
120
 
121
+ ---
 
 
 
 
122
 
123
+ ## πŸ”§ Technical Specifications
124
 
125
  ### Model Architecture and Objective
126
 
127
+ - **Base:** DistilBERT
128
+ - **Objective:** Binary classification head on pooled output
129
+ - **Parameters:** ~66M (same as distilbert)
 
 
 
 
 
 
 
 
 
 
130
 
131
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ ## πŸ“¬ Model Card Contact
134
 
135
+ For questions or feedback, please contact via [Hugging Face profile](https://huggingface.co/alusci).