SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("blachang28/poc-gemma")
# Run inference
queries = [
"When $1999^{2000}$ is divided by $5$, the remainder is",
]
documents = [
"Square $ABCD$ has sides of length 3. Segments $CM$ and $CN$ divide the square's area into three equal parts. How long is segment $CM$?",
'$(6?3) + 4 - (2 - 1) = 5.$ To make this statement true, the question mark between the 6 and the 3 should be replaced by',
'Problems 14, 15 and 16 involve Mrs. Reed\'s English assignment. A Novel Assignment The students in Mrs. Reed\'s English class are reading the same 760-page novel. Three friends, Alice, Bob and Chandra, are in the class. Alice reads a page in 20 seconds, Bob reads a page in 45 seconds and Chandra reads a page in 30 seconds. Chandra and Bob, who each have a copy of the book, decide that they can save time by "team reading" the novel. In this scheme, Chandra will read from page 1 to a certain page and Bob will read from the next page through page 760, finishing the book. When they are through they will tell each other about the part they read. What is the last page that Chandra should read so that she and Bob spend the same amount of time reading the novel?',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.7710, -0.4438, -0.0152]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 200 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 200 samples:
anchor positive negative type string string string details - min: 11 tokens
- mean: 81.76 tokens
- max: 806 tokens
- min: 11 tokens
- mean: 80.08 tokens
- max: 806 tokens
- min: 12 tokens
- mean: 79.01 tokens
- max: 797 tokens
- Samples:
anchor positive negative $(6?3) + 4 - (2 - 1) = 5.$ To make this statement true, the question mark between the 6 and the 3 should be replaced byWhat is the degree measure of the smaller angle formed by the hands of a clock at 10 o'clock?An insect lives on the surface of a regular tetrahedron with edges of length 1. It wishes to travel on the surface of the tetrahedron from the midpoint of one edge to the midpoint of the opposite edge. What is the length of the shortest such trip? (Note: Two edges of a tetrahedron are opposite if they have no common endpoint.)What is the degree measure of the smaller angle formed by the hands of a clock at 10 o'clock?Which triplet of numbers has a sum NOT equal to 1?Corners are sliced off a unit cube so that the six faces each become regular octagons. What is the total volume of the removed tetrahedra?Which triplet of numbers has a sum NOT equal to 1?What is the degree measure of the smaller angle formed by the hands of a clock at 10 o'clock?How many pairs of positive integers $(a,b)$ are there such that $\text{gcd}(a,b)=1$ and $\frac{a}{b} + \frac{14b}{9a}$ is an integer? $\mathrm {(A)}\ 4\quad\mathrm {(B)}\ 6\quad\mathrm {(C)}\ 9\quad\mathrm {(D)}\ 12\quad\mathrm {(E)}\ \text{infinitely many}$ - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 1learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1prompts: task: classification | query:
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: task: classification | query:batch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 1.0 | 200 | 1.3954 |
| 2.0 | 400 | 0.8112 |
| 3.0 | 600 | 0.0855 |
| 4.0 | 800 | 0.0529 |
| 5.0 | 1000 | 0.0018 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.2
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for blachang28/poc-gemma
Base model
google/embeddinggemma-300m