Commit
·
776805c
1
Parent(s):
2ce1adc
update the readme
Browse files
README.md
CHANGED
|
@@ -9,6 +9,8 @@ tags:
|
|
| 9 |
- tiny
|
| 10 |
- feature-extraction
|
| 11 |
- sentence-similarity
|
|
|
|
|
|
|
| 12 |
|
| 13 |
license: mit
|
| 14 |
widget:
|
|
@@ -46,3 +48,12 @@ def embed_bert_cls(text, model, tokenizer):
|
|
| 46 |
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
| 47 |
# (312,)
|
| 48 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
- tiny
|
| 10 |
- feature-extraction
|
| 11 |
- sentence-similarity
|
| 12 |
+
- sentence-transformers
|
| 13 |
+
- transformers
|
| 14 |
|
| 15 |
license: mit
|
| 16 |
widget:
|
|
|
|
| 48 |
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
| 49 |
# (312,)
|
| 50 |
```
|
| 51 |
+
|
| 52 |
+
Alternatively, you can use the model with `sentence_transformers`:
|
| 53 |
+
```Python
|
| 54 |
+
from sentence_transformers import SentenceTransformer
|
| 55 |
+
model = SentenceTransformer('cointegrated/rubert-tiny2')
|
| 56 |
+
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
|
| 57 |
+
embeddings = model.encode(sentences)
|
| 58 |
+
print(embeddings)
|
| 59 |
+
```
|