Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,185 Bytes
9694177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# PLSemanticsBench

[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Dataset-blue)](https://huggingface.co/datasets/EngineeringSoftware/PLSemanticsBench)


## Table of Contents
- [About](#about)
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Benchmark](#benchmark)
- [Citation](#citation)

## About
PLSemanticsBench is the first benchmark for evaluating LLMs as programming language interpreters. We introduce three tasks to evaluate this:

| Task | Description |
|------|-------------|
| ✨ **PredState**| Predicts the final program state |
| ✨ **PredRule** | Predicts the ordered sequence of semantic rules needed to evaluate a program|
| ✨ **PredTrace**| Predicts the step-by-step execution of a program |

## Installation

### System Requirements
- Python 3.11 or higher
- OpenAI API key (for running experiments)


### Step-by-Step Installation
1. Create and activate the conda environment:
```bash
conda env create -f env.yaml
conda activate plsemanticsbench
```

2. Set up your OpenAI API key:
```bash
export OPENAI_API_KEY='your-api-key-here'
```


## Quick Start

### Basic Example
Here's a minimal example to get started:

```python
from plsemanticsbench import GPTRunner, GPT_MODEL_ENUM
from plsemanticsbench import ExperimentArgs, LLMEvaluator
from plsemanticsbench import (
    PROMPT_STRATEGY,
    Task,
    Formalization,
    Semantics_Type,
    Language,
    PLDataset
)

# Model name
model_name = "o3-mini"

# Experiment args: Run the PredState task on the IMP language with
# standard semantics formalized using SOS and with direct prompting
exp_args = ExperimentArgs(
    dataset=PLDataset.Human_Written,
    task=Task.PredState,
    language=Language.IMP,
    formalization=Formalization.SOS,
    semantics_type=Semantics_Type.Standard,
    model_name=model_name,
    prompt_strategy=PROMPT_STRATEGY.DA,
    num_datapoints_to_run=2, # Run just 2 datapoints (omit to run entire dataset)
)
                        
# Run inference using the OpenAI API
gpt_runner = GPTRunner(
    gpt_model=GPT_MODEL_ENUM.O3_MINI,
    args=exp_args,
)

# If prediction file is provided, the predictions will be saved to the file
predictions = gpt_runner.do_experiment()
llm_eval = LLMEvaluator(exp_args)
evaluation_result = llm_eval.evaluate_from_list(results=predictions, model_name=model_name)
print(evaluation_result)
```

### Expected Output

The evaluation results will look like:
```python
{
    'accuracy': 1,
    'malformed-count': 0,
}
```

## Benchmark
You can load the dataset using the `datasets` library. Here is an example:
```python
from datasets import load_dataset

# Load PredState task with standard semantics (uk) and K-semantics formalization (K) and with the Human Written (human-written) dataset
predstate_IMP_K_uk_human_written = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-K-uk-human-written")

# Load PredRule task with nonstandard semantics (mk) ans SOS formalization (SOS) and with the LLM Translated (llm-translated) dataset
predrule_IMP_SOS_mk_llm_translated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predrule-IMP-SOS-mk-llm-translated")

# Load PredState task with no-semantics (nk) and with the Fuzzer Generated (fuzzer-generated) dataset
predstate_IMP_nk_fuzzer_generated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-nk-fuzzer-generated")
```

### Dataset Split

<table>
  <tr>
    <th>Task</th>
    <th>Split</th>
    <th>Description</th>
  </tr>
  <tr>
    <td rowspan="5">✨ <strong>PredState</strong><br>(Final State Prediction)</td>
    <td> predstate-IMP-nk-{dataset-name} </td>
    <td> No semantics </td>
  </tr>
  <tr>
    <td> predstate-IMP-K-uk-{dataset-name} </td>
    <td>Standard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predstate-IMP-K-mk-{dataset-name} </td>
    <td>Nonstandard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predstate-IMP-SOS-uk-{dataset-name} </td>
    <td>Standard semantics with SOS formalization</td>
  </tr>
  <tr>
    <td> predstate-IMP-SOS-mk-{dataset-name} </td>
    <td>Nonstandard semantics with SOS formalization</td>
  </tr>
  <tr>
    <td rowspan="4">✨ <strong>PredRule</strong><br>(Semantic Rule Prediction)</td>
    <td> predrule-IMP-K-uk-human-written </td>
    <td>Standard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predrule-IMP-K-mk-human-written </td>
    <td>Nonstandard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predrule-IMP-SOS-uk-human-written </td>
    <td>Standard semantics with SOS formalization</td>
  </tr>
  <tr>
    <td> predrule-IMP-SOS-mk-human-written </td>
    <td>Nonstandard semantics with SOS formalization</td>
  </tr>
  <tr>
    <td rowspan="4">✨ <strong>PredTrace</strong><br>(Execution Trace Prediction)</td>
    <td> predtrace-IMP-K-uk-human-written </td>
    <td>Standard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predtrace-IMP-K-mk-human-written </td>
    <td>Nonstandard semantics with K-semantics formalization</td>
  </tr>
  <tr>
    <td> predtrace-IMP-SOS-uk-human-written </td>
    <td>Standard semantics with SOS formalization</td>
  </tr>
  <tr>
    <td> predtrace-IMP-SOS-mk-human-written </td>
    <td>Nonstandard semantics with SOS formalization</td>
  </tr>
</table>


### Data Example

One example of the dataset is as follows:
```json
{
  "program": "int ans; ans = 1; ...",
  "syntax": "<program> :: ...",
  "semantics": "ℤ := Set of integers ...",
  "mutated-program": "int ans; ans = 1; ...",
  "mutation-pattern": "KeyWordSwap",
  "exec-trace": [
    {
      "linenumber": 1,
      "rule": ["Rule 38", "Rule 39"],
      "state": {"ans": 1}
    }
  ],
  "ground-truth": "<answer>...</answer>"
}
```

## Citation
```bibtex
@article{ThimmaiahETAL25PLSemanticsBench,
  title={PLSemanticsBench: Large Language Models As Programming Language Interpreters},
  author={Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric},
  year={2025},
  archivePrefix={arXiv},
  url={https://arxiv.org/abs/2510.03415}, 
}
```


## License
This project is licensed under the CC0-1.0 License.