# PLSemanticsBench [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Dataset-blue)](https://huggingface.co/datasets/EngineeringSoftware/PLSemanticsBench) ## Table of Contents - [About](#about) - [Installation](#installation) - [Quick Start](#quick-start) - [Benchmark](#benchmark) - [Citation](#citation) ## About PLSemanticsBench is the first benchmark for evaluating LLMs as programming language interpreters. We introduce three tasks to evaluate this: | Task | Description | |------|-------------| | ✨ **PredState**| Predicts the final program state | | ✨ **PredRule** | Predicts the ordered sequence of semantic rules needed to evaluate a program| | ✨ **PredTrace**| Predicts the step-by-step execution of a program | ## Installation ### System Requirements - Python 3.11 or higher - OpenAI API key (for running experiments) ### Step-by-Step Installation 1. Create and activate the conda environment: ```bash conda env create -f env.yaml conda activate plsemanticsbench ``` 2. Set up your OpenAI API key: ```bash export OPENAI_API_KEY='your-api-key-here' ``` ## Quick Start ### Basic Example Here's a minimal example to get started: ```python from plsemanticsbench import GPTRunner, GPT_MODEL_ENUM from plsemanticsbench import ExperimentArgs, LLMEvaluator from plsemanticsbench import ( PROMPT_STRATEGY, Task, Formalization, Semantics_Type, Language, PLDataset ) # Model name model_name = "o3-mini" # Experiment args: Run the PredState task on the IMP language with # standard semantics formalized using SOS and with direct prompting exp_args = ExperimentArgs( dataset=PLDataset.Human_Written, task=Task.PredState, language=Language.IMP, formalization=Formalization.SOS, semantics_type=Semantics_Type.Standard, model_name=model_name, prompt_strategy=PROMPT_STRATEGY.DA, num_datapoints_to_run=2, # Run just 2 datapoints (omit to run entire dataset) ) # Run inference using the OpenAI API gpt_runner = GPTRunner( gpt_model=GPT_MODEL_ENUM.O3_MINI, args=exp_args, ) # If prediction file is provided, the predictions will be saved to the file predictions = gpt_runner.do_experiment() llm_eval = LLMEvaluator(exp_args) evaluation_result = llm_eval.evaluate_from_list(results=predictions, model_name=model_name) print(evaluation_result) ``` ### Expected Output The evaluation results will look like: ```python { 'accuracy': 1, 'malformed-count': 0, } ``` ## Benchmark You can load the dataset using the `datasets` library. Here is an example: ```python from datasets import load_dataset # Load PredState task with standard semantics (uk) and K-semantics formalization (K) and with the Human Written (human-written) dataset predstate_IMP_K_uk_human_written = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-K-uk-human-written") # Load PredRule task with nonstandard semantics (mk) ans SOS formalization (SOS) and with the LLM Translated (llm-translated) dataset predrule_IMP_SOS_mk_llm_translated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predrule-IMP-SOS-mk-llm-translated") # Load PredState task with no-semantics (nk) and with the Fuzzer Generated (fuzzer-generated) dataset predstate_IMP_nk_fuzzer_generated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-nk-fuzzer-generated") ``` ### Dataset Split
Task Split Description
PredState
(Final State Prediction)
predstate-IMP-nk-{dataset-name} No semantics
predstate-IMP-K-uk-{dataset-name} Standard semantics with K-semantics formalization
predstate-IMP-K-mk-{dataset-name} Nonstandard semantics with K-semantics formalization
predstate-IMP-SOS-uk-{dataset-name} Standard semantics with SOS formalization
predstate-IMP-SOS-mk-{dataset-name} Nonstandard semantics with SOS formalization
PredRule
(Semantic Rule Prediction)
predrule-IMP-K-uk-human-written Standard semantics with K-semantics formalization
predrule-IMP-K-mk-human-written Nonstandard semantics with K-semantics formalization
predrule-IMP-SOS-uk-human-written Standard semantics with SOS formalization
predrule-IMP-SOS-mk-human-written Nonstandard semantics with SOS formalization
PredTrace
(Execution Trace Prediction)
predtrace-IMP-K-uk-human-written Standard semantics with K-semantics formalization
predtrace-IMP-K-mk-human-written Nonstandard semantics with K-semantics formalization
predtrace-IMP-SOS-uk-human-written Standard semantics with SOS formalization
predtrace-IMP-SOS-mk-human-written Nonstandard semantics with SOS formalization
### Data Example One example of the dataset is as follows: ```json { "program": "int ans; ans = 1; ...", "syntax": " :: ...", "semantics": "ℤ := Set of integers ...", "mutated-program": "int ans; ans = 1; ...", "mutation-pattern": "KeyWordSwap", "exec-trace": [ { "linenumber": 1, "rule": ["Rule 38", "Rule 39"], "state": {"ans": 1} } ], "ground-truth": "..." } ``` ## Citation ```bibtex @article{ThimmaiahETAL25PLSemanticsBench, title={PLSemanticsBench: Large Language Models As Programming Language Interpreters}, author={Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric}, year={2025}, archivePrefix={arXiv}, url={https://arxiv.org/abs/2510.03415}, } ``` ## License This project is licensed under the CC0-1.0 License.