REgenerate lab-ai-datapizza commited on
Commit
5b986a0
·
verified ·
0 Parent(s):

Duplicate from datapizza-ai-lab/salaries

Browse files

Co-authored-by: Lab AI Datapizza <[email protected]>

Files changed (3) hide show
  1. .gitattributes +60 -0
  2. README.md +153 -0
  3. data/submissions.jsonl +3 -0
.gitattributes ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
+ *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/submissions.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - it
5
+ tags:
6
+ - salaries
7
+ - italy
8
+ - tech
9
+ - survey
10
+ - compensation
11
+ pretty_name: Datapizza Salaries
12
+ size_categories:
13
+ - 10K<n<100K
14
+ dataset_info:
15
+ features:
16
+ - name: jobTitle
17
+ dtype: string
18
+ - name: monthsOfExperience
19
+ dtype: int64
20
+ - name: educationType
21
+ dtype: string # nullable
22
+ - name: companyIndustry
23
+ dtype: string # nullable
24
+ - name: companySize
25
+ dtype: string # nullable
26
+ - name: province
27
+ dtype: string
28
+ - name: workMode
29
+ dtype: string
30
+ - name: technologies
31
+ sequence: string
32
+ - name: salary
33
+ dtype: float64
34
+ - name: age
35
+ dtype: int64 # nullable
36
+ - name: gender
37
+ dtype: string # nullable
38
+ - name: aiUsageFrequency
39
+ dtype: int64 # nullable
40
+ - name: aiTechnologies
41
+ sequence: string # nullable
42
+ - name: aiTaskTypes
43
+ sequence: string # nullable
44
+ - name: aiUpdateSources
45
+ sequence: string # nullable
46
+ - name: admiredTechnologies
47
+ sequence: string # nullable
48
+ - name: editor
49
+ dtype: string # nullable
50
+ - name: rating
51
+ dtype: int64 # nullable
52
+ - name: valid
53
+ dtype: bool
54
+ - name: submittedAt
55
+ dtype: string
56
+ ---
57
+
58
+ # Datapizza Salaries
59
+
60
+ A crowd-sourced dataset of salaries from tech workers in Italy, collected via anonymous survey by [Datapizza](https://salaries.datapizza.tech).
61
+
62
+ ## Dataset Description
63
+
64
+ This dataset contains self-reported salary and professional information from technology workers across Italy. Data is collected through an anonymous survey and updated weekly.
65
+
66
+ > **Note:** Data submitted before November 6th, 2024 contains only partial information, as the initial survey version did not collect fields like `educationType`, `age`, `aiUsageFrequency`, and others.
67
+
68
+ ## Features
69
+
70
+ | Field | Type | Description |
71
+ |-------|------|-------------|
72
+ | `jobTitle` | string | Job title (e.g., "software_developer", "data_scientist") |
73
+ | `monthsOfExperience` | int | Professional experience in months |
74
+ | `educationType` | string | Education level (optional) |
75
+ | `companyIndustry` | string | Industry sector (optional) |
76
+ | `companySize` | string | Company headcount range (optional) |
77
+ | `province` | string | Italian province |
78
+ | `workMode` | string | Work arrangement |
79
+ | `technologies` | list[string] | Primary technologies/skills used |
80
+ | `salary` | float | RAL (Gross Annual Salary) in EUR |
81
+ | `age` | int | Respondent age (optional) |
82
+ | `gender` | string | Gender (optional) |
83
+ | `aiUsageFrequency` | int | AI usage frequency 1-5 (optional) |
84
+ | `aiTechnologies` | list[string] | AI tools used (optional) |
85
+ | `aiTaskTypes` | list[string] | AI task types (optional) |
86
+ | `aiUpdateSources` | list[string] | AI news sources (optional) |
87
+ | `admiredTechnologies` | list[string] | Technologies respondent wants to learn (optional) |
88
+ | `editor` | string | Primary code editor/IDE (optional) |
89
+ | `rating` | int | Survey feedback rating 1-5 (optional) |
90
+ | `valid` | bool | Submission validation flag |
91
+ | `submittedAt` | string | Submission timestamp (ISO 8601) |
92
+
93
+ ## Categorical Values
94
+
95
+ ### educationType
96
+ `high_school`, `bachelors_degree`, `masters_degree`, `phd`
97
+
98
+ ### companySize
99
+ `1-10`, `11-50`, `51-200`, `201-500`, `501-1000`, `1001-5000`, `5001+`
100
+
101
+ ### workMode
102
+ `onsite`, `hybrid`, `remote`
103
+
104
+ ### gender
105
+ `male`, `female`, `non_binary`, `prefer_not_to_say`
106
+
107
+ ### companyIndustry
108
+ `bancario`, `assicurativo`, `finanziario_altro`, `consulenza_servizi_professionali`, `tecnologia_ict`, `retail_gdo`, `moda_lusso`, `manifattura_generica`, `automotive`, `chimica_materiali`, `energia_utilities`, `telecomunicazioni`, `sanita_pharma_biotech`, `media_intrattenimento_editoria`, `logistica_trasporti`, `immobiliare_costruzioni`, `alimentare_beverage`, `agricoltura_agroindustria`, `turismo_ospitalita`, `istruzione_ricerca`, `non_profit_ong_associazioni`, `difesa_aerospazio`, `pubblica_amministrazione_enti_governativi`, `altro_indeterminato`
109
+
110
+ ### aiTechnologies
111
+ `chat_gpt`, `claude`, `cursor`, `claude_code`, `gemini`, `microsoft_copilot`, `github_copilot`, `codeium`, `tabnine`, `amazon_code_whisperer`, `jetbrains_ai`, `perplexity`, `mistral_ai`, `llama`, `v0`, `windsurf`, `cody`, `supermaven`, `continue_dev`, `devin`, `replit_ai`, `bolt`
112
+
113
+ ### aiTaskTypes
114
+ `coding`, `study_tutoring`, `doc_analysis`, `data_excel`, `editing`, `brainstorming`, `image_generation`, `translation`, `search_research`, `planning`, `meeting_notes`
115
+
116
+ ### aiUpdateSources
117
+ `x_twitter`, `newsletter`, `reddit`, `hugging_face`, `hacker_news`, `youtube`, `linkedin`, `podcasts`, `discord`, `github`, `official_blogs`
118
+
119
+ ### editor
120
+ `vscode`, `cursor`, `neovim`, `vim`, `zed`, `intellij_idea`, `webstorm`, `pycharm`, `sublime_text`, `emacs`, `atom`, `eclipse`, `visual_studio`, `android_studio`, `xcode`, `windsurf`, `rider`, `fleet`, `phpstorm`, `goland`, `rubymine`, `clion`, `notepad_plus_plus`, `helix`
121
+
122
+ ## Usage
123
+ ```python
124
+ from datasets import load_dataset
125
+
126
+ dataset = load_dataset("datapizza-ai-lab/salaries")
127
+ df = dataset["train"].to_pandas()
128
+
129
+ # Filter for remote workers in Milan
130
+ remote_milan = df[(df["province"] == "Milano") & (df["workMode"] == "remote")]
131
+
132
+ # Average salary by job title
133
+ avg_by_role = df.groupby("jobTitle")["salary"].mean().sort_values(ascending=False)
134
+ ```
135
+
136
+ ## Source
137
+
138
+ Data collected via [salaries.datapizza.tech](https://salaries.datapizza.tech) — an anonymous salary survey for Italian tech workers.
139
+
140
+ ## License
141
+
142
+ **CC-BY-NC-4.0** — You may share and adapt this dataset with attribution for non-commercial purposes.
143
+
144
+ ## Citation
145
+ ```bibtex
146
+ @dataset{datapizza_salaries_2024,
147
+ title={Datapizza Salaries: Italian Tech Worker Compensation Dataset},
148
+ author={Datapizza},
149
+ year={2024},
150
+ url={https://huggingface.co/datasets/datapizza-ai-lab/salaries},
151
+ license={CC-BY-NC-4.0}
152
+ }
153
+ ```
data/submissions.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3798131f1abc452fabf628878a71f091bbe76fb853ae6a620b43a80ded3f953b
3
+ size 11602538