Datasets:
Upload compute_rcrps_with_hf_dataset.py
Browse files- compute_rcrps_with_hf_dataset.py +533 -0
compute_rcrps_with_hf_dataset.py
ADDED
|
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright 2025 ServiceNow
|
| 3 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
you may not use this file except in compliance with the License.
|
| 5 |
+
You may obtain a copy of the License at
|
| 6 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
Unless required by applicable law or agreed to in writing, software
|
| 8 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
+
See the License for the specific language governing permissions and
|
| 11 |
+
limitations under the License.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
# This code is an adaptation of
|
| 15 |
+
# https://github.com/ServiceNow/context-is-key-forecasting/blob/main/cik_benchmark/metrics/roi_metric.py
|
| 16 |
+
# to make it convenient to use with the Hugging Face version of the Context-is-Key benchmark.
|
| 17 |
+
# Please see the __main__ section for an example of how to use it.
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
import pandas as pd
|
| 21 |
+
from io import StringIO
|
| 22 |
+
from datasets import Dataset
|
| 23 |
+
from fractions import Fraction
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def crps(
|
| 27 |
+
target: np.array,
|
| 28 |
+
samples: np.array,
|
| 29 |
+
) -> np.array:
|
| 30 |
+
"""
|
| 31 |
+
Compute the CRPS using the probability weighted moment form.
|
| 32 |
+
See Eq ePWM from "Estimation of the Continuous Ranked Probability Score with
|
| 33 |
+
Limited Information and Applications to Ensemble Weather Forecasts"
|
| 34 |
+
https://link.springer.com/article/10.1007/s11004-017-9709-7
|
| 35 |
+
|
| 36 |
+
This is a O(n log n) per variable exact implementation, without estimation bias.
|
| 37 |
+
|
| 38 |
+
Parameters:
|
| 39 |
+
-----------
|
| 40 |
+
target: np.ndarray
|
| 41 |
+
The target values. (variable dimensions)
|
| 42 |
+
samples: np.ndarray
|
| 43 |
+
The forecast values. (n_samples, variable dimensions)
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
--------
|
| 47 |
+
crps: np.ndarray
|
| 48 |
+
The CRPS for each of the (variable dimensions)
|
| 49 |
+
"""
|
| 50 |
+
assert (
|
| 51 |
+
target.shape == samples.shape[1:]
|
| 52 |
+
), f"shapes mismatch between: {target.shape} and {samples.shape}"
|
| 53 |
+
|
| 54 |
+
num_samples = samples.shape[0]
|
| 55 |
+
num_dims = samples.ndim
|
| 56 |
+
sorted_samples = np.sort(samples, axis=0)
|
| 57 |
+
|
| 58 |
+
abs_diff = (
|
| 59 |
+
np.abs(np.expand_dims(target, axis=0) - sorted_samples).sum(axis=0)
|
| 60 |
+
/ num_samples
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
beta0 = sorted_samples.sum(axis=0) / num_samples
|
| 64 |
+
|
| 65 |
+
# An array from 0 to num_samples - 1, but expanded to allow broadcasting over the variable dimensions
|
| 66 |
+
i_array = np.expand_dims(np.arange(num_samples), axis=tuple(range(1, num_dims)))
|
| 67 |
+
beta1 = (i_array * sorted_samples).sum(axis=0) / (num_samples * (num_samples - 1))
|
| 68 |
+
|
| 69 |
+
return abs_diff + beta0 - 2 * beta1
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _crps_ea_Xy_eb_Xy(Xa, ya, Xb, yb):
|
| 73 |
+
"""
|
| 74 |
+
Unbiased estimate of:
|
| 75 |
+
E|Xa - ya| * E|Xb' - yb|
|
| 76 |
+
"""
|
| 77 |
+
N = len(Xa)
|
| 78 |
+
result = 0.0
|
| 79 |
+
product = np.abs(Xa[:, None] - ya) * np.abs(Xb[None, :] - yb) # i, j
|
| 80 |
+
i, j = np.diag_indices(N)
|
| 81 |
+
product[i, j] = 0
|
| 82 |
+
result = product.sum()
|
| 83 |
+
return result / (N * (N - 1))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _crps_ea_XX_eb_XX(Xa, ya, Xb, yb):
|
| 87 |
+
"""
|
| 88 |
+
Unbiased estimate of:
|
| 89 |
+
E|Xa - Xa'| * E|Xb'' - Xb'''|
|
| 90 |
+
"""
|
| 91 |
+
N = len(Xa)
|
| 92 |
+
|
| 93 |
+
# We want to compute:
|
| 94 |
+
# sum_i≠j≠k≠l |Xa_i - Xa_j| |Xb_k - Xb_l|
|
| 95 |
+
# Instead of doing a sum over i, j, k, l all differents,
|
| 96 |
+
# we take the sum over all i, j, k, l (which is the product between a sum over i, j and a sum over k, l),
|
| 97 |
+
# then substract the collisions, ignoring those between i and j and those between k and l, since those
|
| 98 |
+
# automatically gives zero.
|
| 99 |
+
|
| 100 |
+
sum_ea_XX = np.abs(Xa[:, None] - Xa[None, :]).sum()
|
| 101 |
+
sum_eb_XX = np.abs(Xb[:, None] - Xb[None, :]).sum()
|
| 102 |
+
|
| 103 |
+
# Single conflicts: either i=k, i=l, j=k, or j=l
|
| 104 |
+
# By symmetry, we are left with: 4 sum_i≠j≠k |Xa_i - Xa_j| |Xb_i - Xb_k|
|
| 105 |
+
left = np.abs(Xa[:, None, None] - Xa[None, :, None]) # i, j, k
|
| 106 |
+
right = np.abs(Xb[:, None, None] - Xb[None, None, :]) # i, j, k
|
| 107 |
+
product = left * right
|
| 108 |
+
j, k = np.diag_indices(N)
|
| 109 |
+
product[:, j, k] = 0
|
| 110 |
+
sum_single_conflict = product.sum()
|
| 111 |
+
|
| 112 |
+
# Double conflicts: either i=k and j=l, or i=l and j=k
|
| 113 |
+
# By symmetry, we are left with: 2 sum_i≠j |Xa_i - Xa_j| |Xb_i - Xb_j|
|
| 114 |
+
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
|
| 115 |
+
right = np.abs(Xb[:, None] - Xb[None, :]) # i, j
|
| 116 |
+
product = left * right
|
| 117 |
+
sum_double_conflict = product.sum()
|
| 118 |
+
|
| 119 |
+
result = sum_ea_XX * sum_eb_XX - 4 * sum_single_conflict - 2 * sum_double_conflict
|
| 120 |
+
return result / (N * (N - 1) * (N - 2) * (N - 3))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def _crps_ea_Xy_eb_XX(Xa, ya, Xb, yb):
|
| 124 |
+
"""
|
| 125 |
+
Unbiased estimate of:
|
| 126 |
+
E|Xa - ya| * E|Xb' - Xb''|
|
| 127 |
+
"""
|
| 128 |
+
N = len(Xa)
|
| 129 |
+
|
| 130 |
+
left = np.abs(Xa[:, None, None] - ya) # i, j, k
|
| 131 |
+
right = np.abs(Xb[None, :, None] - Xb[None, None, :]) # i, j, k
|
| 132 |
+
product = left * right
|
| 133 |
+
i, j = np.diag_indices(N)
|
| 134 |
+
product[i, j, :] = 0
|
| 135 |
+
i, k = np.diag_indices(N)
|
| 136 |
+
product[i, :, k] = 0
|
| 137 |
+
result = product.sum()
|
| 138 |
+
return result / (N * (N - 1) * (N - 2))
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def _crps_f_Xy(Xa, ya, Xb, yb):
|
| 142 |
+
"""
|
| 143 |
+
Unbiased estimate of:
|
| 144 |
+
E(|Xa - ya| * |Xb - yb|)
|
| 145 |
+
"""
|
| 146 |
+
N = len(Xa)
|
| 147 |
+
product = np.abs(Xa - ya) * np.abs(Xb - yb) # i
|
| 148 |
+
result = product.sum()
|
| 149 |
+
return result / N
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def _crps_f_XXXy(Xa, ya, Xb, yb):
|
| 153 |
+
"""
|
| 154 |
+
Unbiased estimate of:
|
| 155 |
+
E(|Xa - Xa'| * |Xb - yb|)
|
| 156 |
+
"""
|
| 157 |
+
N = len(Xa)
|
| 158 |
+
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
|
| 159 |
+
right = np.abs(Xb[:, None] - yb) # i, j
|
| 160 |
+
product = left * right
|
| 161 |
+
result = product.sum()
|
| 162 |
+
return result / (N * (N - 1))
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def _crps_f_XX(Xa, ya, Xb, yb):
|
| 166 |
+
"""
|
| 167 |
+
Unbiased estimate of:
|
| 168 |
+
E(|Xa - Xa'| * |Xb - Xb'|)
|
| 169 |
+
"""
|
| 170 |
+
N = len(Xa)
|
| 171 |
+
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
|
| 172 |
+
right = np.abs(Xb[:, None] - Xb[None, :]) # i, j
|
| 173 |
+
product = left * right
|
| 174 |
+
result = product.sum()
|
| 175 |
+
return result / (N * (N - 1))
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def _crps_f_XXXX(Xa, ya, Xb, yb):
|
| 179 |
+
"""
|
| 180 |
+
Unbiased estimate of:
|
| 181 |
+
E(|Xa - Xa'| * |Xb - Xb''|)
|
| 182 |
+
"""
|
| 183 |
+
N = len(Xa)
|
| 184 |
+
left = np.abs(Xa[:, None, None] - Xa[None, :, None]) # i, j, k
|
| 185 |
+
right = np.abs(Xb[:, None, None] - Xb[None, None, :]) # i, j, k
|
| 186 |
+
product = left * right
|
| 187 |
+
j, k = np.diag_indices(N)
|
| 188 |
+
product[:, j, k] = 0
|
| 189 |
+
result = product.sum()
|
| 190 |
+
return result / (N * (N - 1) * (N - 2))
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def crps_covariance(
|
| 194 |
+
Xa: np.array,
|
| 195 |
+
ya: float,
|
| 196 |
+
Xb: np.array,
|
| 197 |
+
yb: float,
|
| 198 |
+
) -> float:
|
| 199 |
+
"""
|
| 200 |
+
Unbiased estimate of the covariance between the CRPS of two correlated random variables.
|
| 201 |
+
If Xa == Xb and ya == yb, returns the variance of the CRPS instead.
|
| 202 |
+
|
| 203 |
+
Parameters:
|
| 204 |
+
-----------
|
| 205 |
+
Xa: np.ndarray
|
| 206 |
+
Samples from a forecast for the first variable. (n_samples)
|
| 207 |
+
ya: float
|
| 208 |
+
The ground-truth value for the first variable.
|
| 209 |
+
Xb: np.ndarray
|
| 210 |
+
Samples from a forecast for the second variable. (n_samples)
|
| 211 |
+
yb: float
|
| 212 |
+
The ground-truth value for the second variable.
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
--------
|
| 216 |
+
covariance: float
|
| 217 |
+
The covariance between the CRPS estimators.
|
| 218 |
+
"""
|
| 219 |
+
N = len(Xa)
|
| 220 |
+
|
| 221 |
+
ea_Xy_eb_Xy = _crps_ea_Xy_eb_Xy(Xa, ya, Xb, yb)
|
| 222 |
+
ea_Xy_eb_XX = _crps_ea_Xy_eb_XX(Xa, ya, Xb, yb)
|
| 223 |
+
ea_XX_eb_Xy = _crps_ea_Xy_eb_XX(Xb, yb, Xa, ya)
|
| 224 |
+
ea_XX_eb_XX = _crps_ea_XX_eb_XX(Xa, ya, Xb, yb)
|
| 225 |
+
|
| 226 |
+
f_Xy = _crps_f_Xy(Xa, ya, Xb, yb)
|
| 227 |
+
f_XXXy = _crps_f_XXXy(Xa, ya, Xb, yb)
|
| 228 |
+
f_XyXX = _crps_f_XXXy(Xb, yb, Xa, ya)
|
| 229 |
+
f_XX = _crps_f_XX(Xa, ya, Xb, yb)
|
| 230 |
+
f_XXXX = _crps_f_XXXX(Xa, ya, Xb, yb)
|
| 231 |
+
|
| 232 |
+
return (
|
| 233 |
+
-(1 / N) * ea_Xy_eb_Xy
|
| 234 |
+
+ (1 / N) * ea_Xy_eb_XX
|
| 235 |
+
+ (1 / N) * ea_XX_eb_Xy
|
| 236 |
+
- ((2 * N - 3) / (2 * N * (N - 1))) * ea_XX_eb_XX
|
| 237 |
+
+ (1 / N) * f_Xy
|
| 238 |
+
- (1 / N) * f_XXXy
|
| 239 |
+
- (1 / N) * f_XyXX
|
| 240 |
+
+ (1 / (2 * N * (N - 1))) * f_XX
|
| 241 |
+
+ ((N - 2) / (N * (N - 1))) * f_XXXX
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def weighted_sum_crps_variance(
|
| 246 |
+
target: np.array,
|
| 247 |
+
samples: np.array,
|
| 248 |
+
weights: np.array,
|
| 249 |
+
) -> float:
|
| 250 |
+
"""
|
| 251 |
+
Unbiased estimator of the variance of the numerical estimate of the
|
| 252 |
+
given weighted sum of CRPS values.
|
| 253 |
+
|
| 254 |
+
This implementation assumes that the univariate is estimated using:
|
| 255 |
+
CRPS(X, y) ~ (1 / n) * sum_i |x_i - y| - 1 / (2 * n * (n-1)) * sum_i,i' |x_i - x_i'|.
|
| 256 |
+
This formula gives the same result as the one used in the crps() implementation above.
|
| 257 |
+
|
| 258 |
+
Note that this is a heavy computation, being O(k^2 n^3) with k variables and n samples.
|
| 259 |
+
Also, while it is unbiased, it is not guaranteed to be >= 0.
|
| 260 |
+
|
| 261 |
+
Parameters:
|
| 262 |
+
-----------
|
| 263 |
+
target: np.ndarray
|
| 264 |
+
The target values: y in the above formula. (k variables)
|
| 265 |
+
samples: np.ndarray
|
| 266 |
+
The forecast values: X in the above formula. (n samples, k variables)
|
| 267 |
+
weights: np.array
|
| 268 |
+
The weight given to the CRPS of each variable. (k variables)
|
| 269 |
+
|
| 270 |
+
Returns:
|
| 271 |
+
--------
|
| 272 |
+
variance: float
|
| 273 |
+
The variance of the weighted sum of the CRPS estimators.
|
| 274 |
+
"""
|
| 275 |
+
assert len(target.shape) == 1
|
| 276 |
+
assert len(samples.shape) == 2
|
| 277 |
+
assert len(weights.shape) == 1
|
| 278 |
+
assert target.shape[0] == samples.shape[1] == weights.shape[0]
|
| 279 |
+
|
| 280 |
+
s = 0.0
|
| 281 |
+
|
| 282 |
+
for i in range(target.shape[0]):
|
| 283 |
+
for j in range(i, target.shape[0]):
|
| 284 |
+
Xa = samples[:, i]
|
| 285 |
+
Xb = samples[:, j]
|
| 286 |
+
ya = target[i]
|
| 287 |
+
yb = target[j]
|
| 288 |
+
|
| 289 |
+
if i == j:
|
| 290 |
+
s += weights[i] * weights[j] * crps_covariance(Xa, ya, Xb, yb)
|
| 291 |
+
else:
|
| 292 |
+
# Multiply by 2 since we would get the same results by switching i and j
|
| 293 |
+
s += 2 * weights[i] * weights[j] * crps_covariance(Xa, ya, Xb, yb)
|
| 294 |
+
|
| 295 |
+
return s
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def mean_crps(target, samples):
|
| 299 |
+
"""
|
| 300 |
+
The mean of the CRPS over all variables
|
| 301 |
+
"""
|
| 302 |
+
if target.size > 0:
|
| 303 |
+
return crps(target, samples).mean()
|
| 304 |
+
else:
|
| 305 |
+
raise RuntimeError(
|
| 306 |
+
f"CRPS received an empty target. Shapes = {target.shape} and {samples.shape}"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def compute_constraint_violation(
|
| 311 |
+
entry: dict,
|
| 312 |
+
samples: np.array,
|
| 313 |
+
scaling: float,
|
| 314 |
+
) -> float:
|
| 315 |
+
violation = 0.0
|
| 316 |
+
scaled_samples = scaling * samples
|
| 317 |
+
|
| 318 |
+
# Min constraint
|
| 319 |
+
scaled_threshold = scaling * entry["constraint_min"]
|
| 320 |
+
violation += (scaled_threshold - scaled_samples).clip(min=0).mean(axis=1)
|
| 321 |
+
|
| 322 |
+
# Max constraint
|
| 323 |
+
scaled_threshold = scaling * entry["constraint_max"]
|
| 324 |
+
violation += (scaled_samples - scaled_threshold).clip(min=0).mean(axis=1)
|
| 325 |
+
|
| 326 |
+
# Variable max constraint
|
| 327 |
+
if len(entry["constraint_variable_max_index"]) > 0:
|
| 328 |
+
indexed_samples = scaled_samples[:, entry["constraint_variable_max_index"]]
|
| 329 |
+
scaled_thresholds = scaling * np.array(entry["constraint_variable_max_values"])
|
| 330 |
+
violation += (
|
| 331 |
+
(indexed_samples - scaled_thresholds[None, :]).clip(min=0).mean(axis=1)
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
return violation
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def roi_crps(
|
| 338 |
+
entry: dict,
|
| 339 |
+
forecast: np.array,
|
| 340 |
+
) -> dict[str, float]:
|
| 341 |
+
"""
|
| 342 |
+
Compute the Region-of-Interest CRPS for a single entry of the context-is-key Hugging Face dataset,
|
| 343 |
+
for the given forecast.
|
| 344 |
+
|
| 345 |
+
Parameters:
|
| 346 |
+
----------
|
| 347 |
+
entry: dict
|
| 348 |
+
A dictionary containing a single entry of the context-is-key Hugging Face dataset.
|
| 349 |
+
forecast: np.array
|
| 350 |
+
The forecast values. (n_samples, n_timesteps)
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
--------
|
| 354 |
+
result: dict[str, float]
|
| 355 |
+
A dictionary containing the following entries:
|
| 356 |
+
"metric": the final metric.
|
| 357 |
+
"raw_metric": the metric before the log transformation.
|
| 358 |
+
"scaling": the scaling factor applied to the CRPS and the violations.
|
| 359 |
+
"crps": the weighted CRPS.
|
| 360 |
+
"roi_crps": the CRPS only for the region of interest.
|
| 361 |
+
"non_roi_crps": the CRPS only for the forecast not in the region of interest.
|
| 362 |
+
"violation_mean": the average constraint violation over the samples.
|
| 363 |
+
"violation_crps": the CRPS of the constraint violation.
|
| 364 |
+
"metric_variance": an unbiased estimate of the variance of the metric.
|
| 365 |
+
"""
|
| 366 |
+
future_time = pd.read_json(StringIO(entry["future_time"]))
|
| 367 |
+
target = future_time[future_time.columns[-1]].to_numpy()
|
| 368 |
+
|
| 369 |
+
assert (
|
| 370 |
+
future_time.shape[0] == forecast.shape[1]
|
| 371 |
+
), "Incorrect number of timesteps in forecast"
|
| 372 |
+
|
| 373 |
+
variance_target = target.to_numpy() if isinstance(target, pd.Series) else target
|
| 374 |
+
variance_forecast = forecast
|
| 375 |
+
|
| 376 |
+
if entry["region_of_interest"]:
|
| 377 |
+
roi_mask = np.zeros(forecast.shape[1], dtype=bool)
|
| 378 |
+
for i in entry["region_of_interest"]:
|
| 379 |
+
roi_mask[i] = True
|
| 380 |
+
|
| 381 |
+
roi_crps = mean_crps(target=target[roi_mask], samples=forecast[:, roi_mask])
|
| 382 |
+
non_roi_crps = mean_crps(
|
| 383 |
+
target=target[~roi_mask], samples=forecast[:, ~roi_mask]
|
| 384 |
+
)
|
| 385 |
+
crps_value = 0.5 * roi_crps + 0.5 * non_roi_crps
|
| 386 |
+
standard_crps = mean_crps(target=target, samples=forecast)
|
| 387 |
+
num_roi_timesteps = roi_mask.sum()
|
| 388 |
+
num_non_roi_timesteps = (~roi_mask).sum()
|
| 389 |
+
variance_weights = entry["metric_scaling"] * (
|
| 390 |
+
0.5 * roi_mask / num_roi_timesteps
|
| 391 |
+
+ (1 - 0.5) * ~roi_mask / num_non_roi_timesteps
|
| 392 |
+
)
|
| 393 |
+
else:
|
| 394 |
+
crps_value = mean_crps(target=target, samples=forecast)
|
| 395 |
+
# Those will only be used in the reporting
|
| 396 |
+
roi_crps = crps_value
|
| 397 |
+
non_roi_crps = crps_value
|
| 398 |
+
standard_crps = crps_value
|
| 399 |
+
num_roi_timesteps = len(target)
|
| 400 |
+
num_non_roi_timesteps = 0
|
| 401 |
+
variance_weights = np.full(
|
| 402 |
+
target.shape, fill_value=entry["metric_scaling"] / len(target)
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
violation_amount = compute_constraint_violation(
|
| 406 |
+
entry, samples=forecast, scaling=entry["metric_scaling"]
|
| 407 |
+
)
|
| 408 |
+
violation_func = 10.0 * violation_amount
|
| 409 |
+
|
| 410 |
+
# The target is set to zero, since we make sure that the ground truth always satisfy the constraints
|
| 411 |
+
# The crps code assume multivariate input, so add a dummy dimension
|
| 412 |
+
violation_crps = crps(target=np.zeros(1), samples=violation_func[:, None])[0]
|
| 413 |
+
|
| 414 |
+
variance_target = np.concatenate((variance_target, np.zeros(1)), axis=0)
|
| 415 |
+
variance_forecast = np.concatenate(
|
| 416 |
+
(variance_forecast, violation_func[:, None]), axis=1
|
| 417 |
+
)
|
| 418 |
+
variance_weights = np.concatenate((variance_weights, 1.0 * np.ones(1)), axis=0)
|
| 419 |
+
|
| 420 |
+
raw_metric = entry["metric_scaling"] * crps_value + violation_crps
|
| 421 |
+
metric = raw_metric
|
| 422 |
+
|
| 423 |
+
# Computing the variance of the RCPRS is much more expensive,
|
| 424 |
+
# especially when the number of samples is large.
|
| 425 |
+
# So it can be commented out if not desired.
|
| 426 |
+
variance = weighted_sum_crps_variance(
|
| 427 |
+
target=variance_target,
|
| 428 |
+
samples=variance_forecast,
|
| 429 |
+
weights=variance_weights,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
return {
|
| 433 |
+
"metric": metric,
|
| 434 |
+
"raw_metric": raw_metric,
|
| 435 |
+
"scaling": entry["metric_scaling"],
|
| 436 |
+
"crps": entry["metric_scaling"] * crps_value,
|
| 437 |
+
"roi_crps": entry["metric_scaling"] * roi_crps,
|
| 438 |
+
"non_roi_crps": entry["metric_scaling"] * non_roi_crps,
|
| 439 |
+
"standard_crps": entry["metric_scaling"] * standard_crps,
|
| 440 |
+
"num_roi_timesteps": num_roi_timesteps,
|
| 441 |
+
"num_non_roi_timesteps": num_non_roi_timesteps,
|
| 442 |
+
"violation_mean": violation_amount.mean(),
|
| 443 |
+
"violation_crps": violation_crps,
|
| 444 |
+
"variance": variance,
|
| 445 |
+
}
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def compute_all_rcprs(
|
| 449 |
+
dataset: Dataset,
|
| 450 |
+
forecasts: list[dict],
|
| 451 |
+
) -> tuple[float, float]:
|
| 452 |
+
"""
|
| 453 |
+
Compute the Region-of-Interest CRPS for all instances in the Context-is-Key dataset.
|
| 454 |
+
|
| 455 |
+
Parameters:
|
| 456 |
+
----------
|
| 457 |
+
dataset: Dataset
|
| 458 |
+
The Context-is-Key dataset.
|
| 459 |
+
forecasts: list[dict]
|
| 460 |
+
A list of dictionaries, each containing the following keys:
|
| 461 |
+
- "name": the name of the task for which the forecast is made.
|
| 462 |
+
- "seed": the seed of the instance for which the forecast is made.
|
| 463 |
+
- "forecast": the forecast values. (n_samples, n_timesteps)
|
| 464 |
+
|
| 465 |
+
Returns:
|
| 466 |
+
--------
|
| 467 |
+
mean_crps: float
|
| 468 |
+
The aggregated RCRPS over all instances.
|
| 469 |
+
std_crps: float
|
| 470 |
+
An estimate of the standard error of the aggregated RCRPS.
|
| 471 |
+
"""
|
| 472 |
+
weighted_sum_rcprs = 0.0
|
| 473 |
+
weighted_sum_variance = 0.0
|
| 474 |
+
total_weight = 0.0
|
| 475 |
+
|
| 476 |
+
for entry, forecast in zip(dataset, forecasts):
|
| 477 |
+
if entry["name"] != forecast["name"]:
|
| 478 |
+
raise ValueError(
|
| 479 |
+
f"Forecast name {forecast['name']} does not match dataset entry name {entry['name']}"
|
| 480 |
+
)
|
| 481 |
+
if entry["seed"] != forecast["seed"]:
|
| 482 |
+
raise ValueError(
|
| 483 |
+
f"Forecast seed {forecast['seed']} does not match dataset entry seed {entry['seed']}"
|
| 484 |
+
)
|
| 485 |
+
metric_output = roi_crps(
|
| 486 |
+
entry=entry,
|
| 487 |
+
forecast=forecast["forecast"],
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
weight = Fraction(entry["weight"])
|
| 491 |
+
|
| 492 |
+
# Apply the cap of RCPRS = 5 to the metric
|
| 493 |
+
if metric_output["metric"] >= 5.0:
|
| 494 |
+
metric_output["metric"] = 5.0
|
| 495 |
+
metric_output["variance"] = 0.0
|
| 496 |
+
|
| 497 |
+
weighted_sum_rcprs += weight * metric_output["metric"]
|
| 498 |
+
weighted_sum_variance += weight * weight * metric_output["variance"]
|
| 499 |
+
total_weight += weight
|
| 500 |
+
|
| 501 |
+
mean_crps = weighted_sum_rcprs / total_weight
|
| 502 |
+
std_crps = np.sqrt(weighted_sum_variance) / total_weight
|
| 503 |
+
|
| 504 |
+
return mean_crps, std_crps
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
if __name__ == "__main__":
|
| 508 |
+
# An example of how to use this function,
|
| 509 |
+
# by using a naive forecaster which use random values from the past as its forecast.
|
| 510 |
+
|
| 511 |
+
from datasets import load_dataset
|
| 512 |
+
|
| 513 |
+
dataset = load_dataset("ServiceNow/context-is-key", split="test")
|
| 514 |
+
|
| 515 |
+
# Create a random forecast for each instance in the dataset
|
| 516 |
+
forecasts = []
|
| 517 |
+
for entry in dataset:
|
| 518 |
+
past_time = pd.read_json(StringIO(entry["past_time"]))
|
| 519 |
+
future_time = pd.read_json(StringIO(entry["future_time"]))
|
| 520 |
+
forecast = {
|
| 521 |
+
"name": entry["name"],
|
| 522 |
+
"seed": entry["seed"],
|
| 523 |
+
"forecast": np.random.choice(
|
| 524 |
+
past_time.to_numpy()[:, -1],
|
| 525 |
+
size=(25, len(future_time)),
|
| 526 |
+
replace=True,
|
| 527 |
+
),
|
| 528 |
+
}
|
| 529 |
+
forecasts.append(forecast)
|
| 530 |
+
|
| 531 |
+
mean_crps, std_crps = compute_all_rcprs(dataset, forecasts)
|
| 532 |
+
print(f"Mean RCRPS: {mean_crps}")
|
| 533 |
+
print(f"Standard error of RCRPS: {std_crps}")
|