Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,21 +1,80 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
num_examples: 408
|
| 14 |
-
download_size: 6209
|
| 15 |
-
dataset_size: 8089
|
| 16 |
-
configs:
|
| 17 |
-
- config_name: default
|
| 18 |
-
data_files:
|
| 19 |
-
- split: train
|
| 20 |
-
path: data/train-*
|
| 21 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- tabular-regression
|
| 5 |
+
- tabular-classification
|
| 6 |
+
tags:
|
| 7 |
+
- materials-science
|
| 8 |
+
- chemistry
|
| 9 |
+
- foundry-ml
|
| 10 |
+
- scientific-data
|
| 11 |
+
size_categories:
|
| 12 |
+
- 1K<n<10K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
+
|
| 15 |
+
# Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion
|
| 16 |
+
|
| 17 |
+
Dataset containing DFT-calculated dilute alloy impurity diffusion barriers for 408 host-impurity pairs
|
| 18 |
+
|
| 19 |
+
## Dataset Information
|
| 20 |
+
|
| 21 |
+
- **Source**: [Foundry-ML](https://github.com/MLMI2-CSSI/foundry)
|
| 22 |
+
- **DOI**: [10.18126/uppe-p8p1](https://doi.org/10.18126/uppe-p8p1)
|
| 23 |
+
- **Year**: 2022
|
| 24 |
+
- **Authors**: Lu, Haijin, Zou, Nan, Jacobs, Ryan, Afflerbach, Ben, Lu, Xiao-Gang, Morgan, Dane
|
| 25 |
+
- **Data Type**: tabular
|
| 26 |
+
|
| 27 |
+
### Fields
|
| 28 |
+
|
| 29 |
+
| Field | Role | Description | Units |
|
| 30 |
+
|-------|------|-------------|-------|
|
| 31 |
+
| Material compositions 1 | input | Host element | |
|
| 32 |
+
| Material compositions 2 | input | Solute element | |
|
| 33 |
+
| E_regression_shift | target | DFT-calculated solute migration barrier, given rel | eV |
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
### Splits
|
| 37 |
+
|
| 38 |
+
- **train**: train
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
|
| 43 |
+
### With Foundry-ML (recommended for materials science workflows)
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
from foundry import Foundry
|
| 47 |
+
|
| 48 |
+
f = Foundry()
|
| 49 |
+
dataset = f.get_dataset("10.18126/uppe-p8p1")
|
| 50 |
+
X, y = dataset.get_as_dict()['train']
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### With HuggingFace Datasets
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from datasets import load_dataset
|
| 57 |
+
|
| 58 |
+
dataset = load_dataset("diffusion_v1.4")
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
## Citation
|
| 62 |
+
|
| 63 |
+
```bibtex
|
| 64 |
+
@misc{https://doi.org/10.18126/uppe-p8p1
|
| 65 |
+
doi = {10.18126/uppe-p8p1}
|
| 66 |
+
url = {https://doi.org/10.18126/uppe-p8p1}
|
| 67 |
+
author = {Lu, Haijin and Zou, Nan and Jacobs, Ryan and Afflerbach, Ben and Lu, Xiao-Gang and Morgan, Dane}
|
| 68 |
+
title = {Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion}
|
| 69 |
+
keywords = {machine learning, foundry}
|
| 70 |
+
publisher = {Materials Data Facility}
|
| 71 |
+
year = {root=2022}}
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## License
|
| 75 |
+
|
| 76 |
+
CC-BY 4.0
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
*This dataset was exported from [Foundry-ML](https://github.com/MLMI2-CSSI/foundry), a platform for materials science datasets.*
|