blaiszik commited on
Commit
5259b6a
·
verified ·
1 Parent(s): a2cec24

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +77 -17
README.md CHANGED
@@ -1,19 +1,79 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: name
5
- dtype: string
6
- - name: Tc
7
- dtype: float64
8
- splits:
9
- - name: train
10
- num_bytes: 456874
11
- num_examples: 16414
12
- download_size: 317285
13
- dataset_size: 456874
14
- configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
19
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - tabular-regression
5
+ - tabular-classification
6
+ tags:
7
+ - materials-science
8
+ - chemistry
9
+ - foundry-ml
10
+ - scientific-data
11
+ size_categories:
12
+ - 1K<n<10K
 
 
 
 
 
 
13
  ---
14
+
15
+ # Machine learning modeling of superconducting critical temperature
16
+
17
+ Dataset containing experimentally measured superconducting critical temperatures for 16414 materials
18
+
19
+ ## Dataset Information
20
+
21
+ - **Source**: [Foundry-ML](https://github.com/MLMI2-CSSI/foundry)
22
+ - **DOI**: [10.18126/xlfr-hjrn](https://doi.org/10.18126/xlfr-hjrn)
23
+ - **Year**: 2022
24
+ - **Authors**: Stanev, Valentin, Oses, Corey, Kusne, A. Gilad, Rodriguez, Efrain, Paglione, Johnpierre, Curtarolo, Stefano, Takeuchi, Ichiro
25
+ - **Data Type**: tabular
26
+
27
+ ### Fields
28
+
29
+ | Field | Role | Description | Units |
30
+ |-------|------|-------------|-------|
31
+ | name | input | Material composition | |
32
+ | Tc | target | Experimental superconducting critical temperature | K |
33
+
34
+
35
+ ### Splits
36
+
37
+ - **train**: train
38
+
39
+
40
+ ## Usage
41
+
42
+ ### With Foundry-ML (recommended for materials science workflows)
43
+
44
+ ```python
45
+ from foundry import Foundry
46
+
47
+ f = Foundry()
48
+ dataset = f.get_dataset("10.18126/xlfr-hjrn")
49
+ X, y = dataset.get_as_dict()['train']
50
+ ```
51
+
52
+ ### With HuggingFace Datasets
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+
57
+ dataset = load_dataset("superconductivity_v1.1")
58
+ ```
59
+
60
+ ## Citation
61
+
62
+ ```bibtex
63
+ @misc{https://doi.org/10.18126/xlfr-hjrn
64
+ doi = {10.18126/xlfr-hjrn}
65
+ url = {https://doi.org/10.18126/xlfr-hjrn}
66
+ author = {Stanev, Valentin and Oses, Corey and Kusne, A. Gilad and Rodriguez, Efrain and Paglione, Johnpierre and Curtarolo, Stefano and Takeuchi, Ichiro}
67
+ title = {Machine learning modeling of superconducting critical temperature}
68
+ keywords = {machine learning, foundry}
69
+ publisher = {Materials Data Facility}
70
+ year = {root=2022}}
71
+ ```
72
+
73
+ ## License
74
+
75
+ CC-BY 4.0
76
+
77
+ ---
78
+
79
+ *This dataset was exported from [Foundry-ML](https://github.com/MLMI2-CSSI/foundry), a platform for materials science datasets.*