File size: 6,317 Bytes
831253b dec3021 831253b dec3021 831253b 41c095f 831253b 41c095f 777c4c3 831253b 41c095f 831253b 41c095f 831253b 41c095f 831253b 41c095f 831253b 777c4c3 831253b 777c4c3 831253b 41c095f 831253b 41c095f 831253b 41c095f 831253b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
license: agpl-3.0
task_categories:
- text-classification
- feature-extraction
- text-generation
sub_categories:
- text-classification
- code-understanding
- semantic-analysis
language:
- en
tags:
- code
- art
- biology
- synthetic
- rust
- ast
- emoji
- code-analysis
pretty_name: rust_ast_emoji
size_categories:
- 100K<n<1M
---
# Rust AST Emoji Dataset
## Dataset Description
- **Repository:** [GitHub Repository](https://github.com/meta-introspector/solfunmeme-dioxus)
- **Paper:** [If applicable]
- **Point of Contact:** [Your contact information]
- **Huggingface Hub:** [Dataset link when published]
### Dataset Summary
This dataset contains Rust codebase AST (Abstract Syntax Tree) analysis with emoji mapping for code understanding and visualization. The dataset provides a unique perspective on code structure by mapping AST node types and extracted words to emojis, enabling creative code analysis and visualization.
### Supported Tasks and Leaderboards
- **Code Understanding:** Analyze code structure through emoji patterns
- **Code Classification:** Identify code domains (Crypto, Web, i18n, etc.) through emoji signatures
- **Code Visualization:** Create emoji-based code summaries and visualizations
- **Pattern Recognition:** Discover common coding patterns through emoji frequency analysis
### Languages
The dataset contains Rust source code with English comments and identifiers.
## Dataset Structure
### Data Instances
Each instance contains:
- **file_path:** Path to the original Rust source file
- **timestamp:** Unix timestamp of analysis
- **ast:** Full AST representation in JSON format
- **summary:** Analysis summary including:
- `top_level_nodes`: Number of top-level AST nodes
- `total_nodes`: Total number of AST nodes
- `type_counts`: Count of each AST node type
- `string_literals`: Extracted string literals
- `word_counts`: Word frequency analysis
- `word_emoji_counts`: Emoji mapping for words
- `emoji_counts_in_strings`: Emojis found in string literals
### Data Fields
- `file_path` (string): Path to the original Rust source file
- `timestamp` (int64): Unix timestamp of analysis
- `ast` (string): Full AST representation in JSON
- `summary` (map): Analysis summary with nested fields:
- `top_level_nodes` (int64): Number of top-level AST nodes
- `total_nodes` (int64): Total number of AST nodes
- `type_counts` (map): Count of each AST node type
- `string_literals` (sequence): Extracted string literals
- `word_counts` (map): Word frequency analysis
- `word_emoji_counts` (map): Emoji mapping for words
- `emoji_counts_in_strings` (map): Emojis found in string literals
### Data Splits
- **train:** All analyzed Rust files
## Dataset Creation
### Source Data
#### Initial Data Collection and Normalization
The dataset was created by analyzing Rust source files from the solfunmeme-dioxus project, which includes:
- Core application code
- Vendor dependencies
- Generated code
- Test files
#### Who are the source language producers?
The source code was written by developers working on the solfunmeme-dioxus project, including contributions from the open-source community.
### Annotations
#### Annotation process
The annotation process involved:
1. **AST Parsing:** Using syn crate to parse Rust source files into ASTs
2. **Emoji Mapping:** Mapping AST node types and extracted words to emojis based on semantic categories
3. **Analysis:** Extracting string literals, word frequencies, and emoji patterns
4. **Chunking:** Splitting large datasets into manageable chunks (1MB each)
#### Who are the annotators?
The annotations were generated automatically using a custom Rust script that implements emoji mapping based on predefined categories.
### Personal and Sensitive Information
The dataset contains only code analysis data and does not include personal or sensitive information. All file paths are relative to the project structure.
## Additional Information
### Dataset Curators
The dataset was curated as part of the solfunmeme-dioxus project development process.
### Licensing Information
This dataset is licensed under AGPL-3.0, the same license as the source codebase.
### Citation Information
```bibtex
@dataset{rust_ast_emoji,
title={Rust AST Emoji Dataset},
author={solfunmeme-dioxus contributors},
year={2024},
url={https://github.com/meta-introspector/solfunmeme-dioxus}
}
```
### Contributions
Contributions to improve the dataset, emoji mappings, or analysis methods are welcome through the project's GitHub repository.
## Usage Examples
### Basic Usage
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("h4/solfunmeme-dioxus-reports")
# Access a sample
sample = dataset["train"][0]
print(f"File: {sample['file_path']}")
print(f"Top-level nodes: {sample['summary']['top_level_nodes']}")
print(f"Total nodes: {sample['summary']['total_nodes']}")
```
### Emoji Analysis
```python
# Analyze emoji patterns
emoji_counts = sample['summary']['word_emoji_counts']
for emoji, count in emoji_counts.items():
print(f"{emoji}: {count}")
```
### Code Domain Detection
The dataset enables detection of code domains through emoji patterns:
- π΅ (Agave): Solana/blockchain code
- π¨ (CSS): Frontend/styling code
- π (Crypto): Security/cryptography code
- π (i18n): Internationalization code
## Technical Details
### Chunking Strategy
The dataset is split into chunks of maximum 1MB each to comply with Hugging Face and GitHub file size limits. Each chunk contains multiple code analysis examples.
### Emoji Mapping Categories
The emoji mapping covers several categories:
- **Rust Core:** Basic Rust language constructs (π¦βοΈ, ποΈπ§±, etc.)
- **Web/CSS:** Frontend and styling concepts (π, π§, etc.)
- **Crypto/Security:** Cryptography and security (π, π, etc.)
- **Project-Specific:** Domain-specific terms (π΅, π, etc.)
- **Internationalization:** i18n and localization (π, π, etc.)
- **Testing/Benchmarking:** Testing and performance (β±οΈ, ποΈ, etc.)
### Performance Considerations
The dataset is optimized for:
- **Memory efficiency:** Compact JSON serialization
- **Accessibility:** Small chunk sizes for easy loading
- **Scalability:** Organized directory structure for large datasets
|