Datasets:

Size:
n<1K
ArXiv:
License:
VibecoderMcSwaggins commited on
Commit
3d43132
Β·
verified Β·
1 Parent(s): 1c44ef5

Add dataset card with full documentation

Browse files
Files changed (1) hide show
  1. README.md +176 -0
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - image-segmentation
5
+ tags:
6
+ - medical
7
+ - neuroimaging
8
+ - stroke
9
+ - CT
10
+ - MRI
11
+ - perfusion
12
+ - ISLES
13
+ - BIDS
14
+ size_categories:
15
+ - n<1K
16
+ ---
17
+
18
+ # ISLES'24 Stroke Training Dataset
19
+
20
+ Multi-center longitudinal multimodal acute ischemic stroke training dataset from the ISLES'24 Challenge.
21
+
22
+ ## Dataset Description
23
+
24
+ - **Source:** [Zenodo Record 17652035](https://zenodo.org/records/17652035) (v7, November 2025)
25
+ - **Challenge:** [ISLES 2024](https://isles-24.grand-challenge.org/)
26
+ - **Paper:** [Riedel et al., arXiv:2408.11142](https://arxiv.org/abs/2408.11142)
27
+ - **License:** CC BY-NC-SA 4.0
28
+ - **Size:** 99 GB (compressed)
29
+
30
+ ## Overview
31
+
32
+ 149 acute ischemic stroke training cases with:
33
+ - **Admission imaging (ses-01):** Non-contrast CT, CT angiography, 4D CT perfusion
34
+ - **Follow-up imaging (ses-02):** Post-treatment MRI (DWI, ADC)
35
+ - **Clinical data:** Demographics, patient history, admission NIHSS, 3-month mRS outcomes
36
+ - **Annotations:** Infarct masks, large vessel occlusion masks, Circle of Willis anatomy
37
+
38
+ > **Note:** The ISLES'24 paper describes a training set of 150 cases; the Zenodo v7 training archive contains 149 publicly released subjects.
39
+
40
+ ## Dataset Structure
41
+
42
+ ### Imaging Modalities
43
+
44
+ | Session | Modality | Description |
45
+ |---------|----------|-------------|
46
+ | ses-01 (Acute) | `ncct` | Non-contrast CT |
47
+ | ses-01 (Acute) | `cta` | CT Angiography |
48
+ | ses-01 (Acute) | `ctp` | 4D CT Perfusion time series |
49
+ | ses-01 (Acute) | `tmax` | Time-to-maximum perfusion map |
50
+ | ses-01 (Acute) | `mtt` | Mean transit time map |
51
+ | ses-01 (Acute) | `cbf` | Cerebral blood flow map |
52
+ | ses-01 (Acute) | `cbv` | Cerebral blood volume map |
53
+ | ses-02 (Follow-up) | `dwi` | Diffusion-weighted MRI |
54
+ | ses-02 (Follow-up) | `adc` | Apparent diffusion coefficient |
55
+
56
+ ### Derivative Masks
57
+
58
+ | Mask | Description |
59
+ |------|-------------|
60
+ | `lesion_mask` | Binary infarct segmentation (from follow-up MRI) |
61
+ | `lvo_mask` | Large vessel occlusion mask (from CTA) |
62
+ | `cow_mask` | Circle of Willis anatomy (multi-label, auto-generated from CTA) |
63
+
64
+ ### Clinical Variables
65
+
66
+ Clinical variables are sourced from the `phenotype/` directory and `clinical_data-description.xlsx`:
67
+
68
+ | Variable | Description |
69
+ |----------|-------------|
70
+ | `nihss_admission` | NIH Stroke Scale score at admission |
71
+ | `mrs_3month` | Modified Rankin Scale at 3 months |
72
+ | Demographics | Age, sex, patient history |
73
+
74
+ ## Usage
75
+
76
+ ```python
77
+ from datasets import load_dataset
78
+
79
+ ds = load_dataset("hugging-science/isles24-stroke", split="train")
80
+
81
+ # Access a subject
82
+ example = ds[0]
83
+ print(example["subject_id"]) # "sub-stroke0001"
84
+ print(example["ncct"]) # Non-contrast CT array
85
+ print(example["dwi"]) # Diffusion-weighted MRI
86
+ print(example["lesion_mask"]) # Ground truth segmentation
87
+ print(example["nihss_admission"]) # Stroke severity score
88
+ ```
89
+
90
+ ## Data Organization
91
+
92
+ The source data follows BIDS structure. This tree shows the actual Zenodo v7 layout:
93
+
94
+ ```
95
+ train/
96
+ β”œβ”€β”€ clinical_data-description.xlsx
97
+ β”œβ”€β”€ raw_data/
98
+ β”‚ └── sub-stroke0001/
99
+ β”‚ └── ses-01/
100
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_ncct.nii.gz
101
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_cta.nii.gz
102
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_ctp.nii.gz
103
+ β”‚ └── perfusion-maps/
104
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_tmax.nii.gz
105
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_mtt.nii.gz
106
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_cbf.nii.gz
107
+ β”‚ └── sub-stroke0001_ses-01_cbv.nii.gz
108
+ β”œβ”€β”€ derivatives/
109
+ β”‚ └── sub-stroke0001/
110
+ β”‚ β”œβ”€β”€ ses-01/
111
+ β”‚ β”‚ β”œβ”€β”€ perfusion-maps/
112
+ β”‚ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_tmax.nii.gz
113
+ β”‚ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_mtt.nii.gz
114
+ β”‚ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_cbf.nii.gz
115
+ β”‚ β”‚ β”‚ └── sub-stroke0001_ses-01_space-ncct_cbv.nii.gz
116
+ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_cta.nii.gz
117
+ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_ctp.nii.gz
118
+ β”‚ β”‚ β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_lvo-msk.nii.gz
119
+ β”‚ β”‚ └── sub-stroke0001_ses-01_space-ncct_cow-msk.nii.gz
120
+ β”‚ └── ses-02/
121
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-02_space-ncct_dwi.nii.gz
122
+ β”‚ β”œβ”€β”€ sub-stroke0001_ses-02_space-ncct_adc.nii.gz
123
+ β”‚ └── sub-stroke0001_ses-02_space-ncct_lesion-msk.nii.gz
124
+ └── phenotype/
125
+ └── sub-stroke0001/
126
+ β”œβ”€β”€ ses-01/
127
+ └── ses-02/
128
+ ```
129
+
130
+ ## Citation
131
+
132
+ When using this dataset, please cite:
133
+
134
+ ```bibtex
135
+ @article{riedel2024isles,
136
+ title={ISLES'24 -- A Real-World Longitudinal Multimodal Stroke Dataset},
137
+ author={Riedel, Evamaria Olga and de la Rosa, Ezequiel and Baran, The Anh and
138
+ Hernandez Petzsche, Moritz and Baazaoui, Hakim and Yang, Kaiyuan and
139
+ Musio, Fabio Antonio and Huang, Houjing and Robben, David and
140
+ Seia, Joaquin Oscar and Wiest, Roland and Reyes, Mauricio and
141
+ Su, Ruisheng and Zimmer, Claus and Boeckh-Behrens, Tobias and
142
+ Berndt, Maria and Menze, Bjoern and Rueckert, Daniel and
143
+ Wiestler, Benedikt and Wegener, Susanne and Kirschke, Jan Stefan},
144
+ journal={arXiv preprint arXiv:2408.11142},
145
+ year={2024}
146
+ }
147
+
148
+ @article{delarosa2024isles,
149
+ title={ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?},
150
+ author={de la Rosa, Ezequiel and Su, Ruisheng and Reyes, Mauricio and
151
+ Wiest, Roland and Riedel, Evamaria Olga and Kofler, Florian and
152
+ others and Menze, Bjoern},
153
+ journal={arXiv preprint arXiv:2408.10966},
154
+ year={2024}
155
+ }
156
+ ```
157
+
158
+ If using Circle of Willis masks, also cite:
159
+
160
+ ```bibtex
161
+ @article{yang2023benchmarking,
162
+ title={Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical
163
+ Segmentation of the Circle of Willis for CTA and MRA},
164
+ author={Yang, Kaiyuan and Musio, Fabio and Ma, Yue and Juchler, Norman and
165
+ Paetzold, Johannes C and Al-Maskari, Rami and others and Menze, Bjoern},
166
+ journal={arXiv preprint arXiv:2312.17670},
167
+ year={2023}
168
+ }
169
+ ```
170
+
171
+ ## Related Resources
172
+
173
+ - [ISLES 2024 Challenge](https://isles-24.grand-challenge.org/)
174
+ - [Zenodo Dataset (DOI: 10.5281/zenodo.17652035)](https://doi.org/10.5281/zenodo.17652035)
175
+ - [Dataset Paper (arXiv:2408.11142)](https://arxiv.org/abs/2408.11142)
176
+ - [Challenge Paper (arXiv:2408.10966)](https://arxiv.org/abs/2408.10966)