Datasets:
Add dataset card with full documentation
Browse files
README.md
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-sa-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-segmentation
|
| 5 |
+
tags:
|
| 6 |
+
- medical
|
| 7 |
+
- neuroimaging
|
| 8 |
+
- stroke
|
| 9 |
+
- CT
|
| 10 |
+
- MRI
|
| 11 |
+
- perfusion
|
| 12 |
+
- ISLES
|
| 13 |
+
- BIDS
|
| 14 |
+
size_categories:
|
| 15 |
+
- n<1K
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# ISLES'24 Stroke Training Dataset
|
| 19 |
+
|
| 20 |
+
Multi-center longitudinal multimodal acute ischemic stroke training dataset from the ISLES'24 Challenge.
|
| 21 |
+
|
| 22 |
+
## Dataset Description
|
| 23 |
+
|
| 24 |
+
- **Source:** [Zenodo Record 17652035](https://zenodo.org/records/17652035) (v7, November 2025)
|
| 25 |
+
- **Challenge:** [ISLES 2024](https://isles-24.grand-challenge.org/)
|
| 26 |
+
- **Paper:** [Riedel et al., arXiv:2408.11142](https://arxiv.org/abs/2408.11142)
|
| 27 |
+
- **License:** CC BY-NC-SA 4.0
|
| 28 |
+
- **Size:** 99 GB (compressed)
|
| 29 |
+
|
| 30 |
+
## Overview
|
| 31 |
+
|
| 32 |
+
149 acute ischemic stroke training cases with:
|
| 33 |
+
- **Admission imaging (ses-01):** Non-contrast CT, CT angiography, 4D CT perfusion
|
| 34 |
+
- **Follow-up imaging (ses-02):** Post-treatment MRI (DWI, ADC)
|
| 35 |
+
- **Clinical data:** Demographics, patient history, admission NIHSS, 3-month mRS outcomes
|
| 36 |
+
- **Annotations:** Infarct masks, large vessel occlusion masks, Circle of Willis anatomy
|
| 37 |
+
|
| 38 |
+
> **Note:** The ISLES'24 paper describes a training set of 150 cases; the Zenodo v7 training archive contains 149 publicly released subjects.
|
| 39 |
+
|
| 40 |
+
## Dataset Structure
|
| 41 |
+
|
| 42 |
+
### Imaging Modalities
|
| 43 |
+
|
| 44 |
+
| Session | Modality | Description |
|
| 45 |
+
|---------|----------|-------------|
|
| 46 |
+
| ses-01 (Acute) | `ncct` | Non-contrast CT |
|
| 47 |
+
| ses-01 (Acute) | `cta` | CT Angiography |
|
| 48 |
+
| ses-01 (Acute) | `ctp` | 4D CT Perfusion time series |
|
| 49 |
+
| ses-01 (Acute) | `tmax` | Time-to-maximum perfusion map |
|
| 50 |
+
| ses-01 (Acute) | `mtt` | Mean transit time map |
|
| 51 |
+
| ses-01 (Acute) | `cbf` | Cerebral blood flow map |
|
| 52 |
+
| ses-01 (Acute) | `cbv` | Cerebral blood volume map |
|
| 53 |
+
| ses-02 (Follow-up) | `dwi` | Diffusion-weighted MRI |
|
| 54 |
+
| ses-02 (Follow-up) | `adc` | Apparent diffusion coefficient |
|
| 55 |
+
|
| 56 |
+
### Derivative Masks
|
| 57 |
+
|
| 58 |
+
| Mask | Description |
|
| 59 |
+
|------|-------------|
|
| 60 |
+
| `lesion_mask` | Binary infarct segmentation (from follow-up MRI) |
|
| 61 |
+
| `lvo_mask` | Large vessel occlusion mask (from CTA) |
|
| 62 |
+
| `cow_mask` | Circle of Willis anatomy (multi-label, auto-generated from CTA) |
|
| 63 |
+
|
| 64 |
+
### Clinical Variables
|
| 65 |
+
|
| 66 |
+
Clinical variables are sourced from the `phenotype/` directory and `clinical_data-description.xlsx`:
|
| 67 |
+
|
| 68 |
+
| Variable | Description |
|
| 69 |
+
|----------|-------------|
|
| 70 |
+
| `nihss_admission` | NIH Stroke Scale score at admission |
|
| 71 |
+
| `mrs_3month` | Modified Rankin Scale at 3 months |
|
| 72 |
+
| Demographics | Age, sex, patient history |
|
| 73 |
+
|
| 74 |
+
## Usage
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
from datasets import load_dataset
|
| 78 |
+
|
| 79 |
+
ds = load_dataset("hugging-science/isles24-stroke", split="train")
|
| 80 |
+
|
| 81 |
+
# Access a subject
|
| 82 |
+
example = ds[0]
|
| 83 |
+
print(example["subject_id"]) # "sub-stroke0001"
|
| 84 |
+
print(example["ncct"]) # Non-contrast CT array
|
| 85 |
+
print(example["dwi"]) # Diffusion-weighted MRI
|
| 86 |
+
print(example["lesion_mask"]) # Ground truth segmentation
|
| 87 |
+
print(example["nihss_admission"]) # Stroke severity score
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
## Data Organization
|
| 91 |
+
|
| 92 |
+
The source data follows BIDS structure. This tree shows the actual Zenodo v7 layout:
|
| 93 |
+
|
| 94 |
+
```
|
| 95 |
+
train/
|
| 96 |
+
βββ clinical_data-description.xlsx
|
| 97 |
+
βββ raw_data/
|
| 98 |
+
β βββ sub-stroke0001/
|
| 99 |
+
β βββ ses-01/
|
| 100 |
+
β βββ sub-stroke0001_ses-01_ncct.nii.gz
|
| 101 |
+
β βββ sub-stroke0001_ses-01_cta.nii.gz
|
| 102 |
+
β βββ sub-stroke0001_ses-01_ctp.nii.gz
|
| 103 |
+
β βββ perfusion-maps/
|
| 104 |
+
β βββ sub-stroke0001_ses-01_tmax.nii.gz
|
| 105 |
+
β βββ sub-stroke0001_ses-01_mtt.nii.gz
|
| 106 |
+
β βββ sub-stroke0001_ses-01_cbf.nii.gz
|
| 107 |
+
β βββ sub-stroke0001_ses-01_cbv.nii.gz
|
| 108 |
+
βββ derivatives/
|
| 109 |
+
β βββ sub-stroke0001/
|
| 110 |
+
β βββ ses-01/
|
| 111 |
+
β β βββ perfusion-maps/
|
| 112 |
+
β β β βββ sub-stroke0001_ses-01_space-ncct_tmax.nii.gz
|
| 113 |
+
β β β βββ sub-stroke0001_ses-01_space-ncct_mtt.nii.gz
|
| 114 |
+
β β β βββ sub-stroke0001_ses-01_space-ncct_cbf.nii.gz
|
| 115 |
+
β β β βββ sub-stroke0001_ses-01_space-ncct_cbv.nii.gz
|
| 116 |
+
β β βββ sub-stroke0001_ses-01_space-ncct_cta.nii.gz
|
| 117 |
+
β β βββ sub-stroke0001_ses-01_space-ncct_ctp.nii.gz
|
| 118 |
+
β β βββ sub-stroke0001_ses-01_space-ncct_lvo-msk.nii.gz
|
| 119 |
+
β β βββ sub-stroke0001_ses-01_space-ncct_cow-msk.nii.gz
|
| 120 |
+
β βββ ses-02/
|
| 121 |
+
β βββ sub-stroke0001_ses-02_space-ncct_dwi.nii.gz
|
| 122 |
+
β βββ sub-stroke0001_ses-02_space-ncct_adc.nii.gz
|
| 123 |
+
β βββ sub-stroke0001_ses-02_space-ncct_lesion-msk.nii.gz
|
| 124 |
+
βββ phenotype/
|
| 125 |
+
βββ sub-stroke0001/
|
| 126 |
+
βββ ses-01/
|
| 127 |
+
βββ ses-02/
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
## Citation
|
| 131 |
+
|
| 132 |
+
When using this dataset, please cite:
|
| 133 |
+
|
| 134 |
+
```bibtex
|
| 135 |
+
@article{riedel2024isles,
|
| 136 |
+
title={ISLES'24 -- A Real-World Longitudinal Multimodal Stroke Dataset},
|
| 137 |
+
author={Riedel, Evamaria Olga and de la Rosa, Ezequiel and Baran, The Anh and
|
| 138 |
+
Hernandez Petzsche, Moritz and Baazaoui, Hakim and Yang, Kaiyuan and
|
| 139 |
+
Musio, Fabio Antonio and Huang, Houjing and Robben, David and
|
| 140 |
+
Seia, Joaquin Oscar and Wiest, Roland and Reyes, Mauricio and
|
| 141 |
+
Su, Ruisheng and Zimmer, Claus and Boeckh-Behrens, Tobias and
|
| 142 |
+
Berndt, Maria and Menze, Bjoern and Rueckert, Daniel and
|
| 143 |
+
Wiestler, Benedikt and Wegener, Susanne and Kirschke, Jan Stefan},
|
| 144 |
+
journal={arXiv preprint arXiv:2408.11142},
|
| 145 |
+
year={2024}
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
@article{delarosa2024isles,
|
| 149 |
+
title={ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?},
|
| 150 |
+
author={de la Rosa, Ezequiel and Su, Ruisheng and Reyes, Mauricio and
|
| 151 |
+
Wiest, Roland and Riedel, Evamaria Olga and Kofler, Florian and
|
| 152 |
+
others and Menze, Bjoern},
|
| 153 |
+
journal={arXiv preprint arXiv:2408.10966},
|
| 154 |
+
year={2024}
|
| 155 |
+
}
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
If using Circle of Willis masks, also cite:
|
| 159 |
+
|
| 160 |
+
```bibtex
|
| 161 |
+
@article{yang2023benchmarking,
|
| 162 |
+
title={Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical
|
| 163 |
+
Segmentation of the Circle of Willis for CTA and MRA},
|
| 164 |
+
author={Yang, Kaiyuan and Musio, Fabio and Ma, Yue and Juchler, Norman and
|
| 165 |
+
Paetzold, Johannes C and Al-Maskari, Rami and others and Menze, Bjoern},
|
| 166 |
+
journal={arXiv preprint arXiv:2312.17670},
|
| 167 |
+
year={2023}
|
| 168 |
+
}
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
## Related Resources
|
| 172 |
+
|
| 173 |
+
- [ISLES 2024 Challenge](https://isles-24.grand-challenge.org/)
|
| 174 |
+
- [Zenodo Dataset (DOI: 10.5281/zenodo.17652035)](https://doi.org/10.5281/zenodo.17652035)
|
| 175 |
+
- [Dataset Paper (arXiv:2408.11142)](https://arxiv.org/abs/2408.11142)
|
| 176 |
+
- [Challenge Paper (arXiv:2408.10966)](https://arxiv.org/abs/2408.10966)
|