Commit
·
dca3754
1
Parent(s):
5aeb5cb
Update test.py
Browse files
test.py
CHANGED
|
@@ -1,262 +1,119 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Lint as: python3
|
| 3 |
-
"""test set"""
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
import csv
|
| 7 |
-
import os
|
| 8 |
-
import json
|
| 9 |
-
|
| 10 |
-
import datasets
|
| 11 |
-
from datasets.utils.py_utils import size_str
|
| 12 |
-
from tqdm import tqdm
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
_CITATION = """\
|
| 16 |
-
@inproceedings{panayotov2015librispeech,
|
| 17 |
-
title={Librispeech: an ASR corpus based on public domain audio books},
|
| 18 |
-
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
| 19 |
-
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
| 20 |
-
pages={5206--5210},
|
| 21 |
-
year={2015},
|
| 22 |
-
organization={IEEE}
|
| 23 |
-
}
|
| 24 |
-
"""
|
| 25 |
-
|
| 26 |
-
_DESCRIPTION = """\
|
| 27 |
-
Lorem ipsum
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
_BASE_URL = "https://huggingface.co/datasets/j-krzywdziak/test/tree/main"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
#
|
| 41 |
-
#
|
| 42 |
-
#
|
| 43 |
-
#
|
| 44 |
-
#
|
| 45 |
-
#
|
| 46 |
-
#
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
meta_path =
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
"audio_id":
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# "local_extracted_archive": local_extracted_archive.get("train.100"),
|
| 121 |
-
# "files": dl_manager.iter_archive(archive_path["train.100"]),
|
| 122 |
-
# },
|
| 123 |
-
# ),
|
| 124 |
-
# datasets.SplitGenerator(
|
| 125 |
-
# name="train.360",
|
| 126 |
-
# gen_kwargs={
|
| 127 |
-
# "local_extracted_archive": local_extracted_archive.get("train.360"),
|
| 128 |
-
# "files": dl_manager.iter_archive(archive_path["train.360"]),
|
| 129 |
-
# },
|
| 130 |
-
# ),
|
| 131 |
-
# ]
|
| 132 |
-
# dev_splits = [
|
| 133 |
-
# datasets.SplitGenerator(
|
| 134 |
-
# name=datasets.Split.VALIDATION,
|
| 135 |
-
# gen_kwargs={
|
| 136 |
-
# "local_extracted_archive": local_extracted_archive.get("dev"),
|
| 137 |
-
# "files": dl_manager.iter_archive(archive_path["dev"]),
|
| 138 |
-
# },
|
| 139 |
-
# )
|
| 140 |
-
# ]
|
| 141 |
-
# test_splits = [
|
| 142 |
-
# datasets.SplitGenerator(
|
| 143 |
-
# name=datasets.Split.TEST,
|
| 144 |
-
# gen_kwargs={
|
| 145 |
-
# "local_extracted_archive": local_extracted_archive.get("test"),
|
| 146 |
-
# "files": dl_manager.iter_archive(archive_path["test"]),
|
| 147 |
-
# },
|
| 148 |
-
# )
|
| 149 |
-
# ]
|
| 150 |
-
# elif self.config.name == "other":
|
| 151 |
-
# train_splits = [
|
| 152 |
-
# datasets.SplitGenerator(
|
| 153 |
-
# name="train.500",
|
| 154 |
-
# gen_kwargs={
|
| 155 |
-
# "local_extracted_archive": local_extracted_archive.get("train.500"),
|
| 156 |
-
# "files": dl_manager.iter_archive(archive_path["train.500"]),
|
| 157 |
-
# },
|
| 158 |
-
# )
|
| 159 |
-
# ]
|
| 160 |
-
# dev_splits = [
|
| 161 |
-
# datasets.SplitGenerator(
|
| 162 |
-
# name=datasets.Split.VALIDATION,
|
| 163 |
-
# gen_kwargs={
|
| 164 |
-
# "local_extracted_archive": local_extracted_archive.get("dev"),
|
| 165 |
-
# "files": dl_manager.iter_archive(archive_path["dev"]),
|
| 166 |
-
# },
|
| 167 |
-
# )
|
| 168 |
-
# ]
|
| 169 |
-
# test_splits = [
|
| 170 |
-
# datasets.SplitGenerator(
|
| 171 |
-
# name=datasets.Split.TEST,
|
| 172 |
-
# gen_kwargs={
|
| 173 |
-
# "local_extracted_archive": local_extracted_archive.get("test"),
|
| 174 |
-
# "files": dl_manager.iter_archive(archive_path["test"]),
|
| 175 |
-
# },
|
| 176 |
-
# )
|
| 177 |
-
# ]
|
| 178 |
-
# elif self.config.name == "all":
|
| 179 |
-
# train_splits = [
|
| 180 |
-
# datasets.SplitGenerator(
|
| 181 |
-
# name="train.clean.100",
|
| 182 |
-
# gen_kwargs={
|
| 183 |
-
# "local_extracted_archive": local_extracted_archive.get("train.clean.100"),
|
| 184 |
-
# "files": dl_manager.iter_archive(archive_path["train.clean.100"]),
|
| 185 |
-
# },
|
| 186 |
-
# ),
|
| 187 |
-
# datasets.SplitGenerator(
|
| 188 |
-
# name="train.clean.360",
|
| 189 |
-
# gen_kwargs={
|
| 190 |
-
# "local_extracted_archive": local_extracted_archive.get("train.clean.360"),
|
| 191 |
-
# "files": dl_manager.iter_archive(archive_path["train.clean.360"]),
|
| 192 |
-
# },
|
| 193 |
-
# ),
|
| 194 |
-
# datasets.SplitGenerator(
|
| 195 |
-
# name="train.other.500",
|
| 196 |
-
# gen_kwargs={
|
| 197 |
-
# "local_extracted_archive": local_extracted_archive.get("train.other.500"),
|
| 198 |
-
# "files": dl_manager.iter_archive(archive_path["train.other.500"]),
|
| 199 |
-
# },
|
| 200 |
-
# ),
|
| 201 |
-
# ]
|
| 202 |
-
# dev_splits = [
|
| 203 |
-
# datasets.SplitGenerator(
|
| 204 |
-
# name="validation.clean",
|
| 205 |
-
# gen_kwargs={
|
| 206 |
-
# "local_extracted_archive": local_extracted_archive.get("dev.clean"),
|
| 207 |
-
# "files": dl_manager.iter_archive(archive_path["dev.clean"]),
|
| 208 |
-
# },
|
| 209 |
-
# ),
|
| 210 |
-
# datasets.SplitGenerator(
|
| 211 |
-
# name="validation.other",
|
| 212 |
-
# gen_kwargs={
|
| 213 |
-
# "local_extracted_archive": local_extracted_archive.get("dev.other"),
|
| 214 |
-
# "files": dl_manager.iter_archive(archive_path["dev.other"]),
|
| 215 |
-
# },
|
| 216 |
-
# ),
|
| 217 |
-
# ]
|
| 218 |
-
# test_splits = [
|
| 219 |
-
# datasets.SplitGenerator(
|
| 220 |
-
# name="test.clean",
|
| 221 |
-
# gen_kwargs={
|
| 222 |
-
# "local_extracted_archive": local_extracted_archive.get("test.clean"),
|
| 223 |
-
# "files": dl_manager.iter_archive(archive_path["test.clean"]),
|
| 224 |
-
# },
|
| 225 |
-
# ),
|
| 226 |
-
# datasets.SplitGenerator(
|
| 227 |
-
# name="test.other",
|
| 228 |
-
# gen_kwargs={
|
| 229 |
-
# "local_extracted_archive": local_extracted_archive.get("test.other"),
|
| 230 |
-
# "files": dl_manager.iter_archive(archive_path["test.other"]),
|
| 231 |
-
# },
|
| 232 |
-
# ),
|
| 233 |
-
# ]
|
| 234 |
-
|
| 235 |
-
#return train_splits + dev_splits + test_splits
|
| 236 |
-
|
| 237 |
-
def _generate_examples(self, meta_path, local_extracted_archive):
|
| 238 |
-
"""Generate examples from a LibriSpeech archive_path."""
|
| 239 |
-
data_fields = list(self._info().features.keys())
|
| 240 |
-
metadata = {}
|
| 241 |
-
with open(meta_path, encoding="utf-8") as f:
|
| 242 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 243 |
-
for row in tqdm(reader, desc="Reading metadata..."):
|
| 244 |
-
if not row["audio_id"].endswith(".mp3"):
|
| 245 |
-
row["audio_id"] += ".mp3"
|
| 246 |
-
for field in data_fields:
|
| 247 |
-
if field not in row:
|
| 248 |
-
row[field] = ""
|
| 249 |
-
metadata[row["path"]] = row
|
| 250 |
-
|
| 251 |
-
for filename, file in local_extracted_archive:
|
| 252 |
-
_, filename = os.path.split(filename)
|
| 253 |
-
if filename in metadata:
|
| 254 |
-
result = dict(metadata[filename])
|
| 255 |
-
# set the audio feature and the path to the extracted file
|
| 256 |
-
path = os.path.join(local_extracted_archive,
|
| 257 |
-
filename) if local_extracted_archive else filename
|
| 258 |
-
result["audio"] = {"path": path, "bytes": file.read()}
|
| 259 |
-
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
|
| 260 |
-
result["path"] = path if local_extracted_archive else filename
|
| 261 |
-
|
| 262 |
-
yield path, result
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Lint as: python3
|
| 3 |
+
"""test set"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import csv
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
import datasets
|
| 11 |
+
from datasets.utils.py_utils import size_str
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
_CITATION = """\
|
| 16 |
+
@inproceedings{panayotov2015librispeech,
|
| 17 |
+
title={Librispeech: an ASR corpus based on public domain audio books},
|
| 18 |
+
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
| 19 |
+
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
| 20 |
+
pages={5206--5210},
|
| 21 |
+
year={2015},
|
| 22 |
+
organization={IEEE}
|
| 23 |
+
}
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
_DESCRIPTION = """\
|
| 27 |
+
Lorem ipsum
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
_BASE_URL = "https://huggingface.co/datasets/j-krzywdziak/test/tree/main"
|
| 31 |
+
_DATA_URL = _BASE_URL + "dev.tar.gz"
|
| 32 |
+
_PROMPTS_URLS = _BASE_URL + "dev.tsv"
|
| 33 |
+
|
| 34 |
+
logger = datasets.logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
class TestConfig(datasets.BuilderConfig):
|
| 37 |
+
"""Lorem impsum."""
|
| 38 |
+
|
| 39 |
+
def __init__(self, name, version, **kwargs):
|
| 40 |
+
# self.language = kwargs.pop("language", None)
|
| 41 |
+
# self.release_date = kwargs.pop("release_date", None)
|
| 42 |
+
# self.num_clips = kwargs.pop("num_clips", None)
|
| 43 |
+
# self.num_speakers = kwargs.pop("num_speakers", None)
|
| 44 |
+
# self.validated_hr = kwargs.pop("validated_hr", None)
|
| 45 |
+
# self.total_hr = kwargs.pop("total_hr", None)
|
| 46 |
+
# self.size_bytes = kwargs.pop("size_bytes", None)
|
| 47 |
+
# self.size_human = size_str(self.size_bytes)
|
| 48 |
+
description = (
|
| 49 |
+
f"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor "
|
| 50 |
+
f"incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud "
|
| 51 |
+
f"exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure "
|
| 52 |
+
f"dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. "
|
| 53 |
+
f"Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt "
|
| 54 |
+
f"mollit anim id est laborum."
|
| 55 |
+
)
|
| 56 |
+
super(TestConfigConfig, self).__init__(
|
| 57 |
+
name=name,
|
| 58 |
+
version=datasets.Version(version),
|
| 59 |
+
description=description,
|
| 60 |
+
**kwargs,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
class TestASR(datasets.GeneratorBasedBuilder):
|
| 64 |
+
"""Lorem ipsum."""
|
| 65 |
+
DEFAULT_CONFIG_NAME = "all"
|
| 66 |
+
|
| 67 |
+
BUILDER_CONFIGS = [
|
| 68 |
+
TestConfig(
|
| 69 |
+
name="Test Dataset",
|
| 70 |
+
version="0.0.0",
|
| 71 |
+
)
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
def _info(self):
|
| 75 |
+
return datasets.DatasetInfo(
|
| 76 |
+
description=_DESCRIPTION,
|
| 77 |
+
features=datasets.Features(
|
| 78 |
+
{
|
| 79 |
+
"audio_id": datasets.Value("string"),
|
| 80 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 81 |
+
"ngram": datasets.Value("string")
|
| 82 |
+
}
|
| 83 |
+
),
|
| 84 |
+
supervised_keys=None,
|
| 85 |
+
homepage=_BASE_URL,
|
| 86 |
+
citation=_CITATION
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def _split_generators(self, dl_manager):
|
| 90 |
+
archive_path = dl_manager.download(_DATA_URL)
|
| 91 |
+
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
| 92 |
+
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
| 93 |
+
meta_path = dl_manager.download(_PROMPTS_URLS)
|
| 94 |
+
return [datasets.SplitGenerator(
|
| 95 |
+
name=datasets.Split.TEST,
|
| 96 |
+
gen_kwargs={
|
| 97 |
+
"meta_file": meta_path,
|
| 98 |
+
"audio_files": dl_manager.iter_archive(local_extracted_archive)
|
| 99 |
+
}
|
| 100 |
+
)]
|
| 101 |
+
|
| 102 |
+
def _generate_examples(self, meta_path, audio_files):
|
| 103 |
+
"""Lorem ipsum."""
|
| 104 |
+
metadata = {}
|
| 105 |
+
with open(meta_path, encoding="utf-8") as f:
|
| 106 |
+
for row in f:
|
| 107 |
+
audio_id = row.splt("\t")[0]
|
| 108 |
+
ngram = row.split("\t")[1]
|
| 109 |
+
metadata[audio_id] = {"audio_id": audio_id,
|
| 110 |
+
"ngram": ngram}
|
| 111 |
+
|
| 112 |
+
inside_clips_dir = True
|
| 113 |
+
id_ = 0
|
| 114 |
+
for path, f in audio_files:
|
| 115 |
+
_, audio_name = os.path.split(path)
|
| 116 |
+
if audio_name in metadata:
|
| 117 |
+
audio = {"bytes": f.read()}
|
| 118 |
+
yield id_, {**metadata[audio_id], "audio": audio}
|
| 119 |
+
id_ +=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|