Datasets:
Improve dataset card: Add metadata, benchmarks, and roadmap (#1)
Browse files- Improve dataset card: Add metadata, benchmarks, and roadmap (8627daf3dc54a7b64798455818495b2e9b8e65a8)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,8 +1,19 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
-
|
| 6 |
# SynTTS-Commands: A Multilingual Synthetic Speech Command Dataset
|
| 7 |
|
| 8 |
<!-- Badges Row -->
|
|
@@ -20,7 +31,7 @@ license: mit
|
|
| 20 |
|
| 21 |
## π Introduction
|
| 22 |
|
| 23 |
-
**SynTTS-Commands** is a large-scale, multilingual synthetic speech command dataset specifically designed for low-power Keyword Spotting (KWS) and speech command recognition tasks.
|
| 24 |
|
| 25 |
### π― Core Features
|
| 26 |
|
|
@@ -64,7 +75,7 @@ SynTTS-Commands-Media-Dataset/
|
|
| 64 |
β βββ val/ # Validation set
|
| 65 |
β βββ test/ # Test set
|
| 66 |
βββ comprehensive_metadata.csv # Complete metadata file
|
| 67 |
-
|
| 68 |
|
| 69 |
|
| 70 |
π― Media Command Categories
|
|
@@ -85,6 +96,34 @@ Volume Control: "ε’ε€§ι³ι", "εε°ι³ι", "ιι³", "ι³ιθ°ε°50%", "
|
|
| 85 |
Communication: "ζ₯ε¬η΅θ―", "ζζη΅θ―", "ζζ₯ζ₯η΅"
|
| 86 |
Wake Words: "ε°η±εε¦", "Hello ε°ζΊ", "ε°θΊε°θΊ", "ε¨ δΈζε°θ΄", "ε°εΊ¦ε°εΊ¦", "倩η«η²Ύη΅"
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
π Citation
|
| 89 |
|
| 90 |
If you use this dataset in your research, please cite our paper:
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- audio-classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
- zh
|
| 8 |
+
tags:
|
| 9 |
+
- keyword-spotting
|
| 10 |
+
- tts-synthetic
|
| 11 |
+
- multilingual
|
| 12 |
+
- speech-commands
|
| 13 |
+
- tinyml
|
| 14 |
+
- edge-ai
|
| 15 |
---
|
| 16 |
|
|
|
|
| 17 |
# SynTTS-Commands: A Multilingual Synthetic Speech Command Dataset
|
| 18 |
|
| 19 |
<!-- Badges Row -->
|
|
|
|
| 31 |
|
| 32 |
## π Introduction
|
| 33 |
|
| 34 |
+
**SynTTS-Commands** is a large-scale, multilingual synthetic speech command dataset specifically designed for low-power Keyword Spotting (KWS) and speech command recognition tasks. As presented in the paper [SynTTS-Commands: A Public Dataset for On-Device KWS via TTS-Synthesized Multilingual Speech](https://huggingface.co/papers/2511.07821), this dataset is generated using advanced Text-to-Speech (TTS) technologies, aiming to address the scarcity of high-quality training data in the fields of TinyML and Edge AI.
|
| 35 |
|
| 36 |
### π― Core Features
|
| 37 |
|
|
|
|
| 75 |
β βββ val/ # Validation set
|
| 76 |
β βββ test/ # Test set
|
| 77 |
βββ comprehensive_metadata.csv # Complete metadata file
|
| 78 |
+
```
|
| 79 |
|
| 80 |
|
| 81 |
π― Media Command Categories
|
|
|
|
| 96 |
Communication: "ζ₯ε¬η΅θ―", "ζζη΅θ―", "ζζ₯ζ₯η΅"
|
| 97 |
Wake Words: "ε°η±εε¦", "Hello ε°ζΊ", "ε°θΊε°θΊ", "ε¨ δΈζε°θ΄", "ε°εΊ¦ε°εΊ¦", "倩η«η²Ύη΅"
|
| 98 |
|
| 99 |
+
## π Benchmark Results and Analysis
|
| 100 |
+
|
| 101 |
+
We present a comprehensive benchmark of **six representative acoustic models** on the SynTTS-Commands-Media Dataset across both English (EN) and Chinese (ZH) subsets. All models are evaluated in terms of **classification accuracy**, **cross-entropy loss**, and **parameter count**, providing insights into the trade-offs between performance and model complexity in multilingual voice command recognition.
|
| 102 |
+
|
| 103 |
+
### Performance Summary
|
| 104 |
+
|
| 105 |
+
| Model | EN Loss | EN Accuracy | EN Params | ZH Loss | ZH Accuracy | ZH Params |
|
| 106 |
+
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|
| 107 |
+
| **MicroCNN** | 0.2304 | 93.22% | 4,189 | 0.5579 | 80.14% | 4,255 |
|
| 108 |
+
| **DS-CNN** | 0.0166 | 99.46% | 30,103 | 0.0677 | 97.18% | 30,361 |
|
| 109 |
+
| **TC-ResNet** | 0.0347 | 98.87% | 68,431 | 0.0884 | 96.56% | 68,561 |
|
| 110 |
+
| **CRNN** | **0.0163** | **99.50%** | 1.08M | 0.0636 | **97.42%** | 1.08M |
|
| 111 |
+
| **MobileNet-V1** | 0.0167 | **99.50%** | 2.65M | **0.0552** | 97.92% | 2.65M |
|
| 112 |
+
| **EfficientNet** | 0.0182 | 99.41% | 4.72M | 0.0701 | 97.93% | 4.72M |
|
| 113 |
+
|
| 114 |
+
## πΊοΈ Roadmap & Future Expansion
|
| 115 |
+
|
| 116 |
+
We are expanding SynTTS-Commands beyond multimedia to support broader Edge AI applications.
|
| 117 |
+
|
| 118 |
+
π **[Click here to view our detailed Future Work Plan & Command List](https://github.com/lugan113/SynTTS-Commands-Official/blob/main/Future_Work_Plan.md)**
|
| 119 |
+
|
| 120 |
+
Our upcoming domains include:
|
| 121 |
+
* π **Smart Home:** Far-field commands for lighting and appliances.
|
| 122 |
+
* π **In-Vehicle:** Robust commands optimized for high-noise driving environments.
|
| 123 |
+
* π **Urgent Assistance:** Safety-critical keywords (e.g., "Call 911", "Help me") focusing on high recall.
|
| 124 |
+
|
| 125 |
+
We invite the community to review our [Command Roadmap](https://github.com/lugan113/SynTTS-Commands-Official/blob/main/Future_Work_Plan.md) and suggest additional keywords!
|
| 126 |
+
|
| 127 |
π Citation
|
| 128 |
|
| 129 |
If you use this dataset in your research, please cite our paper:
|