Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
SaylorTwift HF Staff commited on
Commit
5ddd536
·
verified ·
1 Parent(s): 0661df1

Delete loading script

Browse files
Files changed (1) hide show
  1. raft.py +0 -295
raft.py DELETED
@@ -1,295 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import csv
17
- import json
18
- import os
19
- from pathlib import Path
20
-
21
- import datasets
22
-
23
- # TODO: Add BibTeX citation
24
- _CITATION = """\
25
- @InProceedings{huggingface:dataset,
26
- title = {A great new dataset},
27
- author={huggingface, Inc.
28
- },
29
- year={2020}
30
- }
31
- """
32
-
33
- _DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants?
34
-
35
- [RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:
36
-
37
- - across multiple domains (lit review, tweets, customer interaction, etc.)
38
- - on economically valuable classification tasks (someone inherently cares about the task)
39
- - in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)
40
- """
41
-
42
- _HOMEPAGE = "https://raft.elicit.org"
43
-
44
- # TODO: Add the licence for the dataset here if you can find it
45
- _LICENSE = ""
46
-
47
- DATA_DIR = "data/"
48
- TASKS = {
49
- "ade_corpus_v2": {
50
- "name": "ade_corpus_v2",
51
- "description": "",
52
- "data_columns": ["Sentence", "ID"],
53
- "label_columns": {"Label": ["ADE-related", "not ADE-related"]},
54
- },
55
- "banking_77": {
56
- "name": "banking_77",
57
- "description": "",
58
- "data_columns": ["Query", "ID"],
59
- "label_columns": {
60
- "Label": [
61
- "Refund_not_showing_up",
62
- "activate_my_card",
63
- "age_limit",
64
- "apple_pay_or_google_pay",
65
- "atm_support",
66
- "automatic_top_up",
67
- "balance_not_updated_after_bank_transfer",
68
- "balance_not_updated_after_cheque_or_cash_deposit",
69
- "beneficiary_not_allowed",
70
- "cancel_transfer",
71
- "card_about_to_expire",
72
- "card_acceptance",
73
- "card_arrival",
74
- "card_delivery_estimate",
75
- "card_linking",
76
- "card_not_working",
77
- "card_payment_fee_charged",
78
- "card_payment_not_recognised",
79
- "card_payment_wrong_exchange_rate",
80
- "card_swallowed",
81
- "cash_withdrawal_charge",
82
- "cash_withdrawal_not_recognised",
83
- "change_pin",
84
- "compromised_card",
85
- "contactless_not_working",
86
- "country_support",
87
- "declined_card_payment",
88
- "declined_cash_withdrawal",
89
- "declined_transfer",
90
- "direct_debit_payment_not_recognised",
91
- "disposable_card_limits",
92
- "edit_personal_details",
93
- "exchange_charge",
94
- "exchange_rate",
95
- "exchange_via_app",
96
- "extra_charge_on_statement",
97
- "failed_transfer",
98
- "fiat_currency_support",
99
- "get_disposable_virtual_card",
100
- "get_physical_card",
101
- "getting_spare_card",
102
- "getting_virtual_card",
103
- "lost_or_stolen_card",
104
- "lost_or_stolen_phone",
105
- "order_physical_card",
106
- "passcode_forgotten",
107
- "pending_card_payment",
108
- "pending_cash_withdrawal",
109
- "pending_top_up",
110
- "pending_transfer",
111
- "pin_blocked",
112
- "receiving_money",
113
- "request_refund",
114
- "reverted_card_payment?",
115
- "supported_cards_and_currencies",
116
- "terminate_account",
117
- "top_up_by_bank_transfer_charge",
118
- "top_up_by_card_charge",
119
- "top_up_by_cash_or_cheque",
120
- "top_up_failed",
121
- "top_up_limits",
122
- "top_up_reverted",
123
- "topping_up_by_card",
124
- "transaction_charged_twice",
125
- "transfer_fee_charged",
126
- "transfer_into_account",
127
- "transfer_not_received_by_recipient",
128
- "transfer_timing",
129
- "unable_to_verify_identity",
130
- "verify_my_identity",
131
- "verify_source_of_funds",
132
- "verify_top_up",
133
- "virtual_card_not_working",
134
- "visa_or_mastercard",
135
- "why_verify_identity",
136
- "wrong_amount_of_cash_received",
137
- "wrong_exchange_rate_for_cash_withdrawal",
138
- ]
139
- },
140
- },
141
- "terms_of_service": {
142
- "name": "terms_of_service",
143
- "description": "",
144
- "data_columns": ["Sentence", "ID"],
145
- "label_columns": {"Label": ["not potentially unfair", "potentially unfair"]},
146
- },
147
- "tai_safety_research": {
148
- "name": "tai_safety_research",
149
- "description": "",
150
- "data_columns": [
151
- "Title",
152
- "Abstract Note",
153
- "Url",
154
- "Publication Year",
155
- "Item Type",
156
- "Author",
157
- "Publication Title",
158
- "ID",
159
- ],
160
- "label_columns": {"Label": ["TAI safety research", "not TAI safety research"]},
161
- },
162
- "neurips_impact_statement_risks": {
163
- "name": "neurips_impact_statement_risks",
164
- "description": "",
165
- "data_columns": ["Paper title", "Paper link", "Impact statement", "ID"],
166
- "label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]},
167
- },
168
- "overruling": {
169
- "name": "overruling",
170
- "description": "",
171
- "data_columns": ["Sentence", "ID"],
172
- "label_columns": {"Label": ["not overruling", "overruling"]},
173
- },
174
- "systematic_review_inclusion": {
175
- "name": "systematic_review_inclusion",
176
- "description": "",
177
- "data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"],
178
- "label_columns": {"Label": ["included", "not included"]},
179
- },
180
- "one_stop_english": {
181
- "name": "one_stop_english",
182
- "description": "",
183
- "data_columns": ["Article", "ID"],
184
- "label_columns": {"Label": ["advanced", "elementary", "intermediate"]},
185
- },
186
- "tweet_eval_hate": {
187
- "name": "tweet_eval_hate",
188
- "description": "",
189
- "data_columns": ["Tweet", "ID"],
190
- "label_columns": {"Label": ["hate speech", "not hate speech"]},
191
- },
192
- "twitter_complaints": {
193
- "name": "twitter_complaints",
194
- "description": "",
195
- "data_columns": ["Tweet text", "ID"],
196
- "label_columns": {"Label": ["complaint", "no complaint"]},
197
- },
198
- "semiconductor_org_types": {
199
- "name": "semiconductor_org_types",
200
- "description": "",
201
- "data_columns": ["Paper title", "Organization name", "ID"],
202
- "label_columns": {"Label": ["company", "research institute", "university"]},
203
- },
204
- }
205
-
206
- _URLs = {s: {"train": f"{DATA_DIR}{s}/train.csv", "test": f"{DATA_DIR}{s}/test_unlabeled.csv"} for s in TASKS}
207
-
208
-
209
- class Raft(datasets.GeneratorBasedBuilder):
210
- """RAFT Dataset"""
211
- VERSION = datasets.Version("1.1.0")
212
- BUILDER_CONFIGS = []
213
-
214
- for key in TASKS:
215
- td = TASKS[key]
216
- name = td["name"]
217
- description = td["description"]
218
- BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description))
219
-
220
- DEFAULT_CONFIG_NAME = (
221
- "tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense.
222
- )
223
-
224
- def _info(self):
225
- DEFAULT_LABEL_NAME = "Unlabeled"
226
-
227
- task = TASKS[self.config.name]
228
- data_columns = {col_name: (datasets.Value("string") if col_name != "ID" else datasets.Value("int32")) for col_name in task["data_columns"]}
229
-
230
- label_columns = {}
231
- for label_name in task["label_columns"]:
232
- labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name]
233
- label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
234
-
235
- # Merge dicts
236
- features = datasets.Features(**data_columns, **label_columns)
237
-
238
- return datasets.DatasetInfo(
239
- # This is the description that will appear on the datasets page.
240
- description=_DESCRIPTION,
241
- # This defines the different columns of the dataset and their types
242
- features=features, # Here we define them above because they are different between the two configurations
243
- # If there's a common (input, target) tuple from the features,
244
- # specify them here. They'll be used if as_supervised=True in
245
- # builder.as_dataset.
246
- supervised_keys=None,
247
- # Homepage of the dataset for documentation
248
- homepage=_HOMEPAGE,
249
- # License for the dataset if available
250
- license=_LICENSE,
251
- # Citation for the dataset
252
- citation=_CITATION,
253
- )
254
-
255
- def _split_generators(self, dl_manager):
256
- """Returns SplitGenerators."""
257
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
258
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
259
-
260
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
261
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
262
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
263
- data_dir = dl_manager.download_and_extract(_URLs)
264
- dataset = self.config.name
265
- return [
266
- datasets.SplitGenerator(
267
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"}
268
- ),
269
- datasets.SplitGenerator(
270
- name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"}
271
- ),
272
- ]
273
-
274
- def _generate_examples(
275
- self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
276
- ):
277
- """Yields examples as (key, example) tuples."""
278
- # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
279
- # The `key` is here for legacy reason (tfds) and is not important in itself.
280
-
281
- task = TASKS[self.config.name]
282
- labels = list(task["label_columns"])
283
-
284
- with open(filepath, encoding="utf-8") as f:
285
- csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
286
- column_names = next(csv_reader)
287
- # Test csvs don't have any label columns.
288
- if split == "test":
289
- column_names += labels
290
-
291
- for id_, row in enumerate(csv_reader):
292
- if split == "test":
293
- row += ["Unlabeled"] * len(labels)
294
- # dicts don't have inherent ordering in python, right??
295
- yield id_, {name: value for name, value in zip(column_names, row)}