Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
SaylorTwift HF Staff commited on
Commit
deb8651
·
verified ·
1 Parent(s): 52aaa1c

Add 'tweet_eval_hate' config data files

Browse files
.gitattributes CHANGED
@@ -24,3 +24,4 @@ overruling/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
24
  systematic_review_inclusion/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
25
  one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
26
  one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
 
 
24
  systematic_review_inclusion/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
25
  one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
26
  one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
27
+ tweet_eval_hate/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -298,6 +298,28 @@ dataset_info:
298
  num_examples: 5000
299
  download_size: 541547
300
  dataset_size: 972768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
  configs:
302
  - config_name: ade_corpus_v2
303
  data_files:
@@ -348,6 +370,12 @@ configs:
348
  path: terms_of_service/train-*
349
  - split: test
350
  path: terms_of_service/test-*
 
 
 
 
 
 
351
  ---
352
 
353
  # Dataset Card for RAFT
 
298
  num_examples: 5000
299
  download_size: 541547
300
  dataset_size: 972768
301
+ - config_name: tweet_eval_hate
302
+ features:
303
+ - name: Tweet
304
+ dtype: string
305
+ - name: ID
306
+ dtype: int32
307
+ - name: Label
308
+ dtype:
309
+ class_label:
310
+ names:
311
+ '0': Unlabeled
312
+ '1': hate speech
313
+ '2': not hate speech
314
+ splits:
315
+ - name: train
316
+ num_bytes: 7488
317
+ num_examples: 50
318
+ - name: test
319
+ num_bytes: 440048
320
+ num_examples: 2966
321
+ download_size: 300542
322
+ dataset_size: 447536
323
  configs:
324
  - config_name: ade_corpus_v2
325
  data_files:
 
370
  path: terms_of_service/train-*
371
  - split: test
372
  path: terms_of_service/test-*
373
+ - config_name: tweet_eval_hate
374
+ data_files:
375
+ - split: train
376
+ path: tweet_eval_hate/train-*
377
+ - split: test
378
+ path: tweet_eval_hate/test-*
379
  ---
380
 
381
  # Dataset Card for RAFT
dataset_infos.json CHANGED
@@ -527,34 +527,26 @@
527
  "features": {
528
  "Tweet": {
529
  "dtype": "string",
530
- "id": null,
531
  "_type": "Value"
532
  },
533
  "ID": {
534
  "dtype": "int32",
535
- "id": null,
536
  "_type": "Value"
537
  },
538
  "Label": {
539
- "num_classes": 3,
540
  "names": [
541
  "Unlabeled",
542
  "hate speech",
543
  "not hate speech"
544
  ],
545
- "names_file": null,
546
- "id": null,
547
  "_type": "ClassLabel"
548
  }
549
  },
550
- "post_processed": null,
551
- "supervised_keys": null,
552
- "task_templates": null,
553
- "builder_name": "raft",
554
  "config_name": "tweet_eval_hate",
555
  "version": {
556
  "version_str": "1.1.0",
557
- "description": null,
558
  "major": 1,
559
  "minor": 1,
560
  "patch": 0
@@ -562,111 +554,20 @@
562
  "splits": {
563
  "train": {
564
  "name": "train",
565
- "num_bytes": 7492,
566
  "num_examples": 50,
567
- "dataset_name": "raft"
568
  },
569
  "test": {
570
  "name": "test",
571
- "num_bytes": 440052,
572
  "num_examples": 2966,
573
- "dataset_name": "raft"
574
- }
575
- },
576
- "download_checksums": {
577
- "data/ade_corpus_v2/train.csv": {
578
- "num_bytes": 7788,
579
- "checksum": "b6c1268b8ce0fbf4fcaa0ee88562354b65d7ebd2527c3c3cc875e3a47757ae36"
580
- },
581
- "data/ade_corpus_v2/test_unlabeled.csv": {
582
- "num_bytes": 661890,
583
- "checksum": "28981e898281755e1c2d460ab75cceb8f9d8ce0a88ff4636153cf8c393c6f99e"
584
- },
585
- "data/banking_77/train.csv": {
586
- "num_bytes": 3914,
587
- "checksum": "8c417cea66d12569cb3057b125a98358aea0642dda67cf6deea52d4ec1c28ae1"
588
- },
589
- "data/banking_77/test_unlabeled.csv": {
590
- "num_bytes": 327152,
591
- "checksum": "aebd62e56a3b8ebf618afa519cc261fedc7700d96053357ebff83fab44bbaeac"
592
- },
593
- "data/terms_of_service/train.csv": {
594
- "num_bytes": 11528,
595
- "checksum": "8b46784b1e601d753ad44ce33fced828ec3bea95b6b575a2195322ead807f6c7"
596
- },
597
- "data/terms_of_service/test_unlabeled.csv": {
598
- "num_bytes": 917272,
599
- "checksum": "491679e8c9303f825d341dcdfb0a5779a9d2f925744cc44c0039b219abf7d83f"
600
- },
601
- "data/tai_safety_research/train.csv": {
602
- "num_bytes": 54758,
603
- "checksum": "fac15dde8a9f5536424289aa707dcfe1fa3128a7ee2d813cf3251c53092f7dbc"
604
- },
605
- "data/tai_safety_research/test_unlabeled.csv": {
606
- "num_bytes": 1594375,
607
- "checksum": "e606d7858813490507d90d3d17830c6f1ebd8c777fc4a9f865699e375be355d0"
608
- },
609
- "data/neurips_impact_statement_risks/train.csv": {
610
- "num_bytes": 70008,
611
- "checksum": "76cd6aa2707cd99445ba69f8c392a89faa4bf718e967b07dc457f88529b3ff2e"
612
- },
613
- "data/neurips_impact_statement_risks/test_unlabeled.csv": {
614
- "num_bytes": 196429,
615
- "checksum": "5e4d1f313f92dad3e06e035eaff044f818b20ce1ed4d22fcd17e7756e54089a7"
616
- },
617
- "data/overruling/train.csv": {
618
- "num_bytes": 7585,
619
- "checksum": "617061ba0dbd501d74896ccf2f9ebed00c35c4c4057f74afdd94c96cb514130e"
620
- },
621
- "data/overruling/test_unlabeled.csv": {
622
- "num_bytes": 412483,
623
- "checksum": "c0a61fc8980b544611f8d662c752d88e2ed635146f2f3c72f16eec60e3ddb7fe"
624
- },
625
- "data/systematic_review_inclusion/train.csv": {
626
- "num_bytes": 52491,
627
- "checksum": "2d2acd76f6acf1fd1359cf07323586fa134bbe76689e112f5c213b63271e2318"
628
- },
629
- "data/systematic_review_inclusion/test_unlabeled.csv": {
630
- "num_bytes": 2309265,
631
- "checksum": "20710c15f7fda010a3a86a0eda52c5ceb6a709b626610d19e1fc353c42c2d955"
632
- },
633
- "data/one_stop_english/train.csv": {
634
- "num_bytes": 201489,
635
- "checksum": "8c0102ea703677c23c3525e3bc7504c4b734d9298c5d3a25403d274034cb9d89"
636
- },
637
- "data/one_stop_english/test_unlabeled.csv": {
638
- "num_bytes": 2085747,
639
- "checksum": "31e299f91925647744e998f221c0f66c2719df297a20d36d993c8892616a4a53"
640
- },
641
- "data/tweet_eval_hate/train.csv": {
642
- "num_bytes": 7642,
643
- "checksum": "ab091c90e8afbb0dabe17cc6be93b1b80fd914e00a12d66b2dd7b194f355ba65"
644
- },
645
- "data/tweet_eval_hate/test_unlabeled.csv": {
646
- "num_bytes": 412052,
647
- "checksum": "707e720c60f8beb359301994c691a609367cf3bf27d0c573d22f9e47ecc63204"
648
- },
649
- "data/twitter_complaints/train.csv": {
650
- "num_bytes": 5376,
651
- "checksum": "365b067c2d2a7f30128d766baf4901936e047295bb2a693878164dbb84d828fa"
652
- },
653
- "data/twitter_complaints/test_unlabeled.csv": {
654
- "num_bytes": 336272,
655
- "checksum": "7f6f975ec98a5b467b39c487bbc711b29e177119d12c49c79b31faba83609082"
656
- },
657
- "data/semiconductor_org_types/train.csv": {
658
- "num_bytes": 8120,
659
- "checksum": "b7e238cbfd0ed518c222b64e8656599ed13872de135c6e38d6f6123c355d2f64"
660
- },
661
- "data/semiconductor_org_types/test_unlabeled.csv": {
662
- "num_bytes": 68529,
663
- "checksum": "141d8b36685475310c98cdb16099acbf04498d80349f4434c2201deffd271f24"
664
  }
665
  },
666
- "download_size": 9752165,
667
- "post_processing_size": null,
668
- "dataset_size": 447544,
669
- "size_in_bytes": 10199709
670
  },
671
  "twitter_complaints": {
672
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
 
527
  "features": {
528
  "Tweet": {
529
  "dtype": "string",
 
530
  "_type": "Value"
531
  },
532
  "ID": {
533
  "dtype": "int32",
 
534
  "_type": "Value"
535
  },
536
  "Label": {
 
537
  "names": [
538
  "Unlabeled",
539
  "hate speech",
540
  "not hate speech"
541
  ],
 
 
542
  "_type": "ClassLabel"
543
  }
544
  },
545
+ "builder_name": "parquet",
546
+ "dataset_name": "raft",
 
 
547
  "config_name": "tweet_eval_hate",
548
  "version": {
549
  "version_str": "1.1.0",
 
550
  "major": 1,
551
  "minor": 1,
552
  "patch": 0
 
554
  "splits": {
555
  "train": {
556
  "name": "train",
557
+ "num_bytes": 7488,
558
  "num_examples": 50,
559
+ "dataset_name": null
560
  },
561
  "test": {
562
  "name": "test",
563
+ "num_bytes": 440048,
564
  "num_examples": 2966,
565
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566
  }
567
  },
568
+ "download_size": 300542,
569
+ "dataset_size": 447536,
570
+ "size_in_bytes": 748078
 
571
  },
572
  "twitter_complaints": {
573
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
tweet_eval_hate/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fb156a4ba78bfbefc4353c015ff96ce0f8961b4902d99c7e3cbbdd1684fa5b6
3
+ size 292356
tweet_eval_hate/train-00000-of-00001.parquet ADDED
Binary file (8.19 kB). View file