projectlosangeles commited on
Commit
559f33b
·
verified ·
1 Parent(s): de00736

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -17
README.md CHANGED
@@ -11,6 +11,8 @@ tags:
11
  - music search
12
  - music ai
13
  - MIR
 
 
14
  pretty_name: discovermidi
15
  size_categories:
16
  - 1M<n<10M
@@ -25,7 +27,7 @@ size_categories:
25
 
26
  ### Introduction
27
 
28
- #### Bright, fast, and built for discovery — the **Discover MIDI Dataset** is a massive, carefully curated collection of symbolic music designed for music information retrieval (MIR), creative exploration, and training symbolic music AI. It contains **over 6.74M unique, de‑duplicated, and normalized MIDI files**, comprehensive metadata, and GPU‑accelerated search tooling so researchers and creators can find, analyze, and prototype with MIDI at production scale.
29
 
30
  ### Abstract
31
 
@@ -61,18 +63,56 @@ _The dataset is packaged with clear installation and optional dependency instruc
61
  ### pip and setuptools
62
 
63
  ```sh
64
- # It is recommended that you upgrade pip and setuptools prior to install for max compatibility
65
  !pip install --upgrade pip
66
- !pip install --upgrade setuptools
67
  ```
68
 
69
  ### CPU/GPU install
70
 
71
- ```sh
72
- # The following command will install Discover MIDI Dataset for fast GPU search
73
- # Please note that GPU search requires at least 16GB GPU VRAM for full searches at float16 precision
74
 
 
 
 
75
  !pip install -U discovermidi
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  ```
77
 
78
  ### Optional packages
@@ -81,8 +121,7 @@ _The dataset is packaged with clear installation and optional dependency instruc
81
 
82
  ```sh
83
  # The following command will install packages for fast_parallel_extract module
84
- # It will allow you to extract (untar) Godzilla MIDI Dataset much faster
85
-
86
  !sudo apt update -y
87
  !sudo apt install -y p7zip-full
88
  !sudo apt install -y pigz
@@ -92,8 +131,7 @@ _The dataset is packaged with clear installation and optional dependency instruc
92
 
93
  ```sh
94
  # The following command will install packages for midi_to_colab_audio module
95
- # It will allow you to render Godzilla MIDI Dataset MIDIs to audio
96
-
97
  !sudo apt update -y
98
  !sudo apt install fluidsynth
99
  ```
@@ -101,10 +139,14 @@ _The dataset is packaged with clear installation and optional dependency instruc
101
  #### Packages for midi_loops_extractor codebase
102
 
103
  ```sh
104
- # The following command will install packages for midi_loops_extractor codebase
105
- # It will allow you to extract loops from Godzilla MIDI Dataset MIDIs
106
  # Please see README.md in discovermidi/midi_loops_extractor/ for use instructions
 
 
107
 
 
 
108
  !pip install pretty-midi
109
  !pip install symusic
110
  !pip install miditok
@@ -126,7 +168,7 @@ discovermidi.download_dataset()
126
  # Extract Discover MIDI Dataset with built-in function (slow)
127
  discovermidi.parallel_extract()
128
 
129
- # Or you can extract much faster if you have installed the optional packages for fast_parallel_extract module
130
  # from discovermidi import fast_parallel_extract
131
  # fast_parallel_extract.fast_parallel_extract()
132
 
@@ -136,7 +178,7 @@ features_matrixes, features_matrixes_file_names = discovermidi.load_features_mat
136
  # Run the search
137
  # IO dirs will be created on the first run of the following function
138
  # Do not forget to put your master MIDIs into created Master-MIDI-Dataset folder
139
- # The full search for each master MIDI takes about 10-20 seconds on a GPU
140
  discovermidi.search_and_filter(features_matrixes, features_matrixes_file_names)
141
  ```
142
 
@@ -154,7 +196,7 @@ Discover-MIDI-Dataset/ # Dataset root dir
154
  │ └── midi_loops_extractor/ # MIDI loops extractor codebase dir
155
  ├── DATA/ # Dataset (meta)data dir
156
  │ ├── Features Counts/ # Features counts for all MIDIs
157
- │ ├── Features Matrixes/ # Features counts matrixes for all MIDIs
158
  │ ├── Files Lists/ # Files lists by MIDIs types and categories
159
  │ ├── Genres MIDIs/ # Genres, artists and titles data for all matched MIDIs
160
  │ ├── Identified MIDIs/ # Comprehensive data for identified MIDIs
@@ -190,7 +232,7 @@ Discover-MIDI-Dataset/ # Dataset root dir
190
 
191
  ### Features Matrixes
192
 
193
- #### A compressed NumPy array of flattened features matrixes, covering 961 out of 1089 features (without velocities)
194
 
195
  ****
196
 
@@ -255,7 +297,17 @@ Discover-MIDI-Dataset/ # Dataset root dir
255
  ## Citations
256
 
257
  ```bibtex
258
- @misc{GodzillaMIDIDataset2025,
 
 
 
 
 
 
 
 
 
 
259
  title = {Godzilla MIDI Dataset: Enormous, comprehensive, normalized and searchable MIDI dataset for MIR and symbolic music AI purposes},
260
  author = {Alex Lev},
261
  publisher = {Project Los Angeles / Tegridy Code},
 
11
  - music search
12
  - music ai
13
  - MIR
14
+ - MIDI dataset
15
+ - music dataset
16
  pretty_name: discovermidi
17
  size_categories:
18
  - 1M<n<10M
 
27
 
28
  ### Introduction
29
 
30
+ #### Bright, comprehensive, and built for discovery — the **Discover MIDI Dataset** is a massive, carefully curated collection of symbolic music designed for music information retrieval (MIR), creative exploration, and training symbolic music AI. It contains **over 6.74M unique, de‑duplicated, and normalized MIDI files**, comprehensive metadata, and GPU‑accelerated search tooling so researchers and creators can find, analyze, and prototype with MIDI at production scale.
31
 
32
  ### Abstract
33
 
 
63
  ### pip and setuptools
64
 
65
  ```sh
66
+ # It is recommended that you upgrade pip, setuptools, build and wheel prior to install for max compatibility
67
  !pip install --upgrade pip
68
+ !pip install --upgrade setuptools build wheel
69
  ```
70
 
71
  ### CPU/GPU install
72
 
73
+ #### Auto-install with pip
 
 
74
 
75
+ ```sh
76
+ # The following command will install Discover MIDI Dataset for fast GPU search only
77
+ # Please note that GPU search requires at least 16GB GPU VRAM for fast full searches
78
  !pip install -U discovermidi
79
+
80
+ # Alternativelly, you can use [full] option to install dependencies for all included modules
81
+ !pip install -U discovermidi[full]
82
+ ```
83
+
84
+ #### Manual dependencies installation
85
+
86
+ ```sh
87
+ # Core dependencies for search and filter modules
88
+ !pip install tqdm
89
+ !pip install ipywidgets
90
+ !pip install scikit-learn
91
+ !pip install scipy
92
+ !pip install matplotlib
93
+ !pip install hf-transfer
94
+ !pip install huggingface_hub
95
+ !pip install torch
96
+ !pip install midirenderer
97
+ !pip install mididoctor
98
+ !pip install numpy==1.24.4
99
+ ```
100
+
101
+ ```sh
102
+ # Dependencies for midi_loops_extractor modules
103
+ !pip install pretty-midi
104
+ !pip install symusic
105
+ !pip install miditok
106
+ !pip install numba
107
+ ```
108
+
109
+ ```sh
110
+ # Dependencies for aux modules
111
+ !pip install networkx
112
+ !pip install cupy-cuda13x
113
+ !pip install einops
114
+ !pip install einx
115
+ !pip install nltk
116
  ```
117
 
118
  ### Optional packages
 
121
 
122
  ```sh
123
  # The following command will install packages for fast_parallel_extract module
124
+ # It will allow you to extract (untar) Discover MIDI Dataset much faster
 
125
  !sudo apt update -y
126
  !sudo apt install -y p7zip-full
127
  !sudo apt install -y pigz
 
131
 
132
  ```sh
133
  # The following command will install packages for midi_to_colab_audio module
134
+ # It will allow you to render Discover MIDI Dataset MIDIs to audio
 
135
  !sudo apt update -y
136
  !sudo apt install fluidsynth
137
  ```
 
139
  #### Packages for midi_loops_extractor codebase
140
 
141
  ```sh
142
+ # The following command will install additional packages for midi_loops_extractor codebase
143
+ # It will allow you to extract loops from Discover MIDI Dataset MIDIs
144
  # Please see README.md in discovermidi/midi_loops_extractor/ for use instructions
145
+ !pip install -U discovermidi[loops]
146
+ ```
147
 
148
+ ```sh
149
+ # Alternativelly, you can install dependencise for loops codebase manually
150
  !pip install pretty-midi
151
  !pip install symusic
152
  !pip install miditok
 
168
  # Extract Discover MIDI Dataset with built-in function (slow)
169
  discovermidi.parallel_extract()
170
 
171
+ # Or you can extract much faster if you have installed the optional packages for Fast Parallel Extract module
172
  # from discovermidi import fast_parallel_extract
173
  # fast_parallel_extract.fast_parallel_extract()
174
 
 
178
  # Run the search
179
  # IO dirs will be created on the first run of the following function
180
  # Do not forget to put your master MIDIs into created Master-MIDI-Dataset folder
181
+ # The full search for each master MIDI takes about 10-25 seconds on a GPU
182
  discovermidi.search_and_filter(features_matrixes, features_matrixes_file_names)
183
  ```
184
 
 
196
  │ └── midi_loops_extractor/ # MIDI loops extractor codebase dir
197
  ├── DATA/ # Dataset (meta)data dir
198
  │ ├── Features Counts/ # Features counts for all MIDIs
199
+ │ ├── Features Matrixes/ # Pre-computed compressed Features counts matrixes for all MIDIs
200
  │ ├── Files Lists/ # Files lists by MIDIs types and categories
201
  │ ├── Genres MIDIs/ # Genres, artists and titles data for all matched MIDIs
202
  │ ├── Identified MIDIs/ # Comprehensive data for identified MIDIs
 
232
 
233
  ### Features Matrixes
234
 
235
+ #### A compressed NumPy array of flattened features matrixes, covering 961 out of 1089 features (without velocities features)
236
 
237
  ****
238
 
 
297
  ## Citations
298
 
299
  ```bibtex
300
+ @misc{project_los_angeles_2025,
301
+ author = { Project Los Angeles },
302
+ title = { Discover-MIDI-Dataset },
303
+ year = 2025,
304
+ url = { https://huggingface.co/datasets/projectlosangeles/Discover-MIDI-Dataset },
305
+ publisher = { Hugging Face }
306
+ }
307
+ ```
308
+
309
+ ```bibtex
310
+ @misc{DiscoverMIDIDataset2025,
311
  title = {Godzilla MIDI Dataset: Enormous, comprehensive, normalized and searchable MIDI dataset for MIR and symbolic music AI purposes},
312
  author = {Alex Lev},
313
  publisher = {Project Los Angeles / Tegridy Code},