Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
gallilmaimon commited on
Commit
f4d6358
·
verified ·
1 Parent(s): 120f1a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -45
README.md CHANGED
@@ -1,46 +1,46 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: speaker
5
- dtype: string
6
- - name: prompt_text
7
- dtype: string
8
- - name: chosen_text
9
- dtype: string
10
- - name: rejected_text
11
- dtype: string
12
- - name: prompt
13
- dtype: audio
14
- - name: chosen
15
- dtype: audio
16
- - name: rejected
17
- dtype: audio
18
- - name: auto_bleu2
19
- dtype: float64
20
- splits:
21
- - name: validation
22
- num_bytes: 12199479621.038
23
- num_examples: 20006
24
- - name: train
25
- num_bytes: 28797300145.392
26
- num_examples: 47928
27
- download_size: 36106016770
28
- dataset_size: 40996779766.43
29
- configs:
30
- - config_name: default
31
- data_files:
32
- - split: train
33
- path: data/train-*
34
- - split: validation
35
- path: data/validation-*
36
- license: mit
37
- task_categories:
38
- - audio-to-audio
39
- language:
40
- - en
41
- size_categories:
42
- - 10K<n<100K
43
- ---
44
 
45
  # SpokenSwag
46
  We present here SpokenSwag as described in the paper ["_Slamming_: Training a Speech Language Model on One GPU in a Day"](link).
@@ -50,7 +50,7 @@ We encourage you to also see the following resources, for further information:
50
 
51
  **Project Page:** https://pages.cs.huji.ac.il/adiyoss-lab/slamming/ \
52
  **Paper:** Soon! \
53
- **Code:** https://github.com/slp-rl/slam \
54
 
55
 
56
  If you use our dataset, please cite the paper as follows:
@@ -80,7 +80,7 @@ from datasets import load_dataset
80
  spoken_swag = load_dataset('slprl/SpokenSwag')
81
  ```
82
 
83
- We refer you to the _Slam_ [codebase](https://github.com/slp-rl/slam) to see how you can train a SpeechLM with DPO over the dataset.
84
 
85
  ## Data Fields
86
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: speaker
5
+ dtype: string
6
+ - name: prompt_text
7
+ dtype: string
8
+ - name: chosen_text
9
+ dtype: string
10
+ - name: rejected_text
11
+ dtype: string
12
+ - name: prompt
13
+ dtype: audio
14
+ - name: chosen
15
+ dtype: audio
16
+ - name: rejected
17
+ dtype: audio
18
+ - name: auto_bleu2
19
+ dtype: float64
20
+ splits:
21
+ - name: validation
22
+ num_bytes: 12199479621.038
23
+ num_examples: 20006
24
+ - name: train
25
+ num_bytes: 28797300145.392
26
+ num_examples: 47928
27
+ download_size: 36106016770
28
+ dataset_size: 40996779766.43
29
+ configs:
30
+ - config_name: default
31
+ data_files:
32
+ - split: train
33
+ path: data/train-*
34
+ - split: validation
35
+ path: data/validation-*
36
+ license: mit
37
+ task_categories:
38
+ - audio-to-audio
39
+ language:
40
+ - en
41
+ size_categories:
42
+ - 10K<n<100K
43
+ ---
44
 
45
  # SpokenSwag
46
  We present here SpokenSwag as described in the paper ["_Slamming_: Training a Speech Language Model on One GPU in a Day"](link).
 
50
 
51
  **Project Page:** https://pages.cs.huji.ac.il/adiyoss-lab/slamming/ \
52
  **Paper:** Soon! \
53
+ **Code:** https://github.com/slp-rl/slamkit
54
 
55
 
56
  If you use our dataset, please cite the paper as follows:
 
80
  spoken_swag = load_dataset('slprl/SpokenSwag')
81
  ```
82
 
83
+ We refer you to the _SlamKit_ [codebase](https://github.com/slp-rl/slamkit) to see how you can train a SpeechLM with DPO over the dataset.
84
 
85
  ## Data Fields
86