Update README.md
Browse files
README.md
CHANGED
|
@@ -19,3 +19,27 @@ In our original work, we directly transcribed the speech with Whisper Medium. Ho
|
|
| 19 |
|
| 20 |
## Intended Use
|
| 21 |
This set of data can be used for Accented ASR research!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Intended Use
|
| 21 |
This set of data can be used for Accented ASR research!
|
| 22 |
+
|
| 23 |
+
## Code Example
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
dataset = load_dataset("sylviali/EDEN_ASR_Data", split="train")
|
| 28 |
+
|
| 29 |
+
print(dataset)
|
| 30 |
+
|
| 31 |
+
# Download the audio to a local file
|
| 32 |
+
import urllib
|
| 33 |
+
urllib.request.urlretrieve(dataset[0]["audio_url"], "audio.wav")
|
| 34 |
+
|
| 35 |
+
# Extract the ASR transcript
|
| 36 |
+
print(dataset[0]["corrected_whisper_transcript"])
|
| 37 |
+
|
| 38 |
+
# Extract the emotion label
|
| 39 |
+
print(dataset[0]["emotion_label"])
|
| 40 |
+
|
| 41 |
+
# Check negative emotion audio clips
|
| 42 |
+
negative_emotion_clips = dataset.filter(lambda example: example["emotion_label"] == "Negative")
|
| 43 |
+
print(len(negative_emotion_clips))
|
| 44 |
+
print(negative_emotion_clips[0])
|
| 45 |
+
```
|