davanstrien HF Staff commited on
Commit
3a303bb
·
1 Parent(s): 2063000

Add README.md for SAM3 object detection with usage instructions and examples

Browse files
Files changed (1) hide show
  1. README.md +217 -0
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ viewer: false
3
+ tags: [uv-script, computer-vision, object-detection, sam3, image-processing]
4
+ license: apache-2.0
5
+ ---
6
+
7
+ # SAM3 Object Detection
8
+
9
+ Detect objects in images using Meta's **SAM3** (Segment Anything Model 3) with text prompts. Process HuggingFace datasets with zero-shot object detection using natural language descriptions.
10
+
11
+ ## Quick Start
12
+
13
+ **Requires GPU.** Use HuggingFace Jobs for cloud execution:
14
+
15
+ ```bash
16
+ hf jobs uv run --flavor a100-large \
17
+ -s HF_TOKEN=HF_TOKEN \
18
+ https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
19
+ input-dataset \
20
+ output-dataset \
21
+ --class-name photograph
22
+ ```
23
+
24
+ ## Local Execution
25
+
26
+ If you have a CUDA GPU locally:
27
+
28
+ ```bash
29
+ uv run detect-objects.py INPUT OUTPUT --class-name CLASSNAME
30
+ ```
31
+
32
+ ## Arguments
33
+
34
+ **Required:**
35
+
36
+ - `input_dataset` - Input HF dataset ID
37
+ - `output_dataset` - Output HF dataset ID
38
+ - `--class-name` - Object class to detect (e.g., `"photograph"`, `"animal"`, `"table"`)
39
+
40
+ **Common options:**
41
+
42
+ - `--confidence-threshold FLOAT` - Min confidence (default: 0.5)
43
+ - `--batch-size INT` - Batch size (default: 4)
44
+ - `--max-samples INT` - Limit samples for testing
45
+ - `--image-column STR` - Image column name (default: "image")
46
+ - `--private` - Make output private
47
+
48
+ <details>
49
+ <summary>All options</summary>
50
+
51
+ ```
52
+ --mask-threshold FLOAT Mask generation threshold (default: 0.5)
53
+ --split STR Dataset split (default: "train")
54
+ --shuffle Shuffle before processing
55
+ --model STR Model ID (default: "facebook/sam3")
56
+ --dtype STR Precision: float32|float16|bfloat16
57
+ --hf-token STR HF token (or use HF_TOKEN env var)
58
+ ```
59
+
60
+ </details>
61
+
62
+ ## HuggingFace Jobs Examples
63
+
64
+ ### Historical Newspapers
65
+
66
+ Detect photographs in historical newspaper scans:
67
+
68
+ ```bash
69
+ hf jobs uv run --flavor a100-large \
70
+ -s HF_TOKEN=HF_TOKEN \
71
+ https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
72
+ davanstrien/newspapers-with-images-after-photography \
73
+ my-username/newspapers-detected \
74
+ --class-name photograph \
75
+ --confidence-threshold 0.6 \
76
+ --batch-size 8
77
+ ```
78
+
79
+ ### Document Tables
80
+
81
+ Extract tables from document scans:
82
+
83
+ ```bash
84
+ hf jobs uv run --flavor a100-large \
85
+ -s HF_TOKEN=HF_TOKEN \
86
+ https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
87
+ my-documents \
88
+ documents-with-tables \
89
+ --class-name table
90
+ ```
91
+
92
+ ### Wildlife Camera Traps
93
+
94
+ Detect animals in camera trap images:
95
+
96
+ ```bash
97
+ hf jobs uv run --flavor a100-large \
98
+ -s HF_TOKEN=HF_TOKEN \
99
+ https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
100
+ wildlife-images \
101
+ wildlife-detections \
102
+ --class-name animal \
103
+ --confidence-threshold 0.5
104
+ ```
105
+
106
+ ### Quick Testing
107
+
108
+ Test on a small subset before full run:
109
+
110
+ ```bash
111
+ hf jobs uv run --flavor a100-large \
112
+ -s HF_TOKEN=HF_TOKEN \
113
+ https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
114
+ large-dataset \
115
+ test-output \
116
+ --class-name object \
117
+ --max-samples 20
118
+ ```
119
+
120
+ ### Using Different GPU Flavors
121
+
122
+ ```bash
123
+ # L4 (cost-effective)
124
+ --flavor l4x1
125
+
126
+ # A100 (fastest)
127
+ --flavor a100
128
+ ```
129
+
130
+ See [HF Jobs pricing](https://huggingface.co/pricing#spaces-compute).
131
+
132
+ ## Output Format
133
+
134
+ Adds `objects` column with ClassLabel-based detections:
135
+
136
+ ```python
137
+ {
138
+ "objects": [
139
+ {
140
+ "bbox": [x, y, width, height],
141
+ "category": 0, # Always 0 for single class
142
+ "score": 0.87
143
+ }
144
+ ]
145
+ }
146
+ ```
147
+
148
+ Load and use:
149
+
150
+ ```python
151
+ from datasets import load_dataset
152
+
153
+ ds = load_dataset("username/output", split="train")
154
+
155
+ # ClassLabel feature preserves your class name
156
+ class_name = ds.features["objects"].feature["category"].names[0]
157
+ print(f"Detected class: {class_name}")
158
+
159
+ for sample in ds:
160
+ for obj in sample["objects"]:
161
+ print(f"{class_name}: {obj['score']:.2f} at {obj['bbox']}")
162
+ ```
163
+
164
+ ## Detecting Multiple Object Types
165
+
166
+ To detect multiple object types, run the script multiple times with different `--class-name` values:
167
+
168
+ ```bash
169
+ # Detect photographs
170
+ hf jobs uv run ... --class-name photograph
171
+
172
+ # Detect illustrations
173
+ hf jobs uv run ... --class-name illustration
174
+
175
+ # Merge results as needed
176
+ ```
177
+
178
+ ## Performance
179
+
180
+ | GPU | Batch Size | ~Images/sec |
181
+ | --- | ---------- | ----------- |
182
+ | L4 | 4-8 | 2-4 |
183
+ | A10 | 8-16 | 4-6 |
184
+
185
+ _Varies by image size and detection complexity_
186
+
187
+ ## Common Use Cases
188
+
189
+ **Documents:** `--class-name table` or `--class-name figure`
190
+ **Newspapers:** `--class-name photograph` or `--class-name illustration`
191
+ **Wildlife:** `--class-name animal` or `--class-name bird`
192
+ **Products:** `--class-name product` or `--class-name label`
193
+
194
+ ## Troubleshooting
195
+
196
+ **No CUDA:** Use HF Jobs (see examples above)
197
+ **OOM errors:** Reduce `--batch-size`
198
+ **Few detections:** Lower `--confidence-threshold` or try different class descriptions
199
+ **Wrong column:** Use `--image-column your_column_name`
200
+
201
+ ## About SAM3
202
+
203
+ [SAM3](https://huggingface.co/facebook/sam3) is Meta's zero-shot vision model. Describe any object in natural language and it will detect it—no training required.
204
+
205
+ **Note:** This script uses transformers from git (SAM3 not yet in stable release).
206
+
207
+ ## See Also
208
+
209
+ More UV scripts at [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts):
210
+
211
+ - **dataset-creation** - Create HF datasets from files
212
+ - **vllm** - Fast LLM inference
213
+ - **ocr** - Document OCR
214
+
215
+ ## License
216
+
217
+ Apache 2.0