Upload README.md
Browse files
README.md
CHANGED
|
@@ -21,19 +21,22 @@ This dataset contains traffic flow data for time series forecasting tasks, commo
|
|
| 21 |
## Dataset Structure
|
| 22 |
|
| 23 |
### Data Format
|
|
|
|
| 24 |
- **Format**: Parquet files for efficient loading and analysis
|
| 25 |
- **Splits**: train (70%), validation (10%), test (20%) - **temporal splits** preserving chronological order
|
| 26 |
- **Features**: Time series traffic flow data with temporal and spatial dimensions
|
| 27 |
|
| 28 |
### Split Strategy
|
|
|
|
| 29 |
- **Temporal splitting**: Data is split chronologically to prevent data leakage
|
| 30 |
- **All sensors included**: Each split contains data for all sensors at each time step
|
| 31 |
- **Training period**: Earliest 70% of time samples across all sensors
|
| 32 |
-
- **Validation period**: Next 10% of time samples across all sensors
|
| 33 |
- **Test period**: Latest 20% of time samples across all sensors
|
| 34 |
- **Graph structure preserved**: Spatial relationships maintained in all splits
|
| 35 |
|
| 36 |
### Data Schema
|
|
|
|
| 37 |
- `node_id`: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)
|
| 38 |
- `x_t*_d*`: Input features at different time offsets and dimensions
|
| 39 |
- `x_t-11_d0` to `x_t+0_d0`: Traffic flow values at 12 historical time steps
|
|
@@ -43,8 +46,9 @@ This dataset contains traffic flow data for time series forecasting tasks, commo
|
|
| 43 |
- `y_t+1_d1` to `y_t+12_d1`: Time-of-day features for prediction horizon
|
| 44 |
|
| 45 |
### Dataset Statistics
|
|
|
|
| 46 |
- **Total time series samples**: ~34K (METR-LA) / ~52K (PEMS-BAY)
|
| 47 |
-
- **Total records**: ~7M (METR-LA) / ~17M (PEMS-BAY)
|
| 48 |
- **Records per sample**: 207 (METR-LA) / 325 (PEMS-BAY) sensors
|
| 49 |
- **Temporal resolution**: 5-minute intervals
|
| 50 |
- **Prediction horizon**: 1 hour (12 time steps)
|
|
@@ -52,24 +56,23 @@ This dataset contains traffic flow data for time series forecasting tasks, commo
|
|
| 52 |
## Usage
|
| 53 |
|
| 54 |
```python
|
| 55 |
-
from datasets import
|
| 56 |
import pandas as pd
|
| 57 |
|
| 58 |
-
# Load from
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
train_df = pd.read_parquet("train.parquet")
|
| 63 |
-
val_df = pd.read_parquet("val.parquet")
|
| 64 |
-
test_df = pd.read_parquet("test.parquet")
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
print(f"
|
| 73 |
```
|
| 74 |
|
| 75 |
## Citation
|
|
@@ -77,11 +80,11 @@ print(f"Shape for one time sample: {first_sample.shape}")
|
|
| 77 |
If you use this dataset, please cite the original DCRNN paper:
|
| 78 |
|
| 79 |
```bibtex
|
| 80 |
-
@inproceedings{
|
| 81 |
-
title={Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting},
|
| 82 |
-
author={Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan},
|
| 83 |
-
booktitle={International Conference on Learning Representations},
|
| 84 |
-
year={2018}
|
| 85 |
}
|
| 86 |
```
|
| 87 |
|
|
@@ -95,4 +98,4 @@ This dataset is derived from the original METR-LA dataset used in the DCRNN pape
|
|
| 95 |
|
| 96 |
## License
|
| 97 |
|
| 98 |
-
MIT License - See LICENSE
|
|
|
|
| 21 |
## Dataset Structure
|
| 22 |
|
| 23 |
### Data Format
|
| 24 |
+
|
| 25 |
- **Format**: Parquet files for efficient loading and analysis
|
| 26 |
- **Splits**: train (70%), validation (10%), test (20%) - **temporal splits** preserving chronological order
|
| 27 |
- **Features**: Time series traffic flow data with temporal and spatial dimensions
|
| 28 |
|
| 29 |
### Split Strategy
|
| 30 |
+
|
| 31 |
- **Temporal splitting**: Data is split chronologically to prevent data leakage
|
| 32 |
- **All sensors included**: Each split contains data for all sensors at each time step
|
| 33 |
- **Training period**: Earliest 70% of time samples across all sensors
|
| 34 |
+
- **Validation period**: Next 10% of time samples across all sensors
|
| 35 |
- **Test period**: Latest 20% of time samples across all sensors
|
| 36 |
- **Graph structure preserved**: Spatial relationships maintained in all splits
|
| 37 |
|
| 38 |
### Data Schema
|
| 39 |
+
|
| 40 |
- `node_id`: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)
|
| 41 |
- `x_t*_d*`: Input features at different time offsets and dimensions
|
| 42 |
- `x_t-11_d0` to `x_t+0_d0`: Traffic flow values at 12 historical time steps
|
|
|
|
| 46 |
- `y_t+1_d1` to `y_t+12_d1`: Time-of-day features for prediction horizon
|
| 47 |
|
| 48 |
### Dataset Statistics
|
| 49 |
+
|
| 50 |
- **Total time series samples**: ~34K (METR-LA) / ~52K (PEMS-BAY)
|
| 51 |
+
- **Total records**: ~7M (METR-LA) / ~17M (PEMS-BAY)
|
| 52 |
- **Records per sample**: 207 (METR-LA) / 325 (PEMS-BAY) sensors
|
| 53 |
- **Temporal resolution**: 5-minute intervals
|
| 54 |
- **Prediction horizon**: 1 hour (12 time steps)
|
|
|
|
| 56 |
## Usage
|
| 57 |
|
| 58 |
```python
|
| 59 |
+
from datasets import Dataset, DatasetDict
|
| 60 |
import pandas as pd
|
| 61 |
|
| 62 |
+
# Load from local parquet files
|
| 63 |
+
train_df = pd.read_parquet("METR-LA/train.parquet")
|
| 64 |
+
val_df = pd.read_parquet("METR-LA/val.parquet")
|
| 65 |
+
test_df = pd.read_parquet("METR-LA/test.parquet")
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
ds = DatasetDict({
|
| 68 |
+
"train": Dataset.from_pandas(train_df, preserve_index=False),
|
| 69 |
+
"val": Dataset.from_pandas(val_df, preserve_index=False),
|
| 70 |
+
"test": Dataset.from_pandas(test_df, preserve_index=False)
|
| 71 |
+
})
|
| 72 |
|
| 73 |
+
print(f"Train records: {len(ds['train']):,}")
|
| 74 |
+
print(f"Val records: {len(ds['val']):,}")
|
| 75 |
+
print(f"Test records: {len(ds['test']):,}")
|
| 76 |
```
|
| 77 |
|
| 78 |
## Citation
|
|
|
|
| 80 |
If you use this dataset, please cite the original DCRNN paper:
|
| 81 |
|
| 82 |
```bibtex
|
| 83 |
+
@inproceedings{li2018dcrnn_traffic,
|
| 84 |
+
title={{Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting}},
|
| 85 |
+
author={{Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan}},
|
| 86 |
+
booktitle={{International Conference on Learning Representations}},
|
| 87 |
+
year={{2018}}
|
| 88 |
}
|
| 89 |
```
|
| 90 |
|
|
|
|
| 98 |
|
| 99 |
## License
|
| 100 |
|
| 101 |
+
MIT License - See the [original repository LICENSE](https://github.com/liyaguang/DCRNN/blob/master/LICENSE) for details.
|