File size: 9,506 Bytes
9b04ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# copy from https://gitlab.deepseek.com/deepseek/hai-llm/-/blob/master/scripts/dist_safetensor_writer.py

import os
import math
import torch
from pathlib import Path
from datetime import timedelta
from multiprocessing.shared_memory import SharedMemory
from uuid import uuid4
import numpy as np
import time
import json
try:
    from hf3fs_fuse.io import make_iovec, make_ioring, ioring, register_fd, deregister_fd, h3fio
except Exception:
    pass


INT_LEN = 8
BYTE_ORDER = 'big'


def tensor_to_bytes(tensor: torch.Tensor) -> bytes:
    if tensor.numel() == 0:
        return b''
    return tensor.view(torch.int8).numpy().data.cast('B')
    

except_fs = {'cpu'}
clusters = ['jd', 'hg']
hf3fs_paths = []
hf3fs_mount_points = []
for cluster in clusters:
    hf3fs_paths += os.listdir(f'/hf3fs-{cluster}') if os.path.exists(f'/hf3fs-{cluster}') else []
    hf3fs_mount_points += [os.path.join(f'/hf3fs-{cluster}', f) for f in hf3fs_paths if f not in except_fs]


def get_hf3fs_mount_point(file_path: str) -> str:
    rp =  os.path.realpath(Path(file_path).absolute())
    return '/'.join(rp.split('/')[:3])

class DistWriter():
    def __init__(self, max_ops=100<<10, write_buf_size=1<<29):
        self.max_ops = max_ops
        self.write_buf_size = write_buf_size
        self.shm = SharedMemory(name=f'hf3fs-iovs-{uuid4()}', create=True, size=self.write_buf_size)
        self._iov = {}
        self._buf = {}
        self._ior = {}
        for hf3fs_mount_point in hf3fs_mount_points:
            try:
                iov = make_iovec(self.shm, hf3fs_mount_point, block_size=0, numa=-1)
                buf = memoryview(iov.iov)
                ior = make_ioring(hf3fs_mount_point, 100 << 10, for_read=False, io_depth=-1, numa=-1)
                self._iov[hf3fs_mount_point] = iov
                self._buf[hf3fs_mount_point] = buf
                self._ior[hf3fs_mount_point] = ior
            except Exception:
                pass
        self.shm.unlink()
        self.fd_cache = {}

    def _open(self, file_path):
        if self.fd_cache.get(file_path) is None:
            # os.makedirs(os.path.dirname(file_path),  exist_ok=True)
            hf3fs_mount_point = get_hf3fs_mount_point(file_path)
            try:
                fd = os.open(file_path, os.O_WRONLY | os.O_CREAT | os.O_SYNC)
            except Exception:  # 发现在 weka 上打开文件会 FileExistsError
                fd = os.open(file_path, os.O_WRONLY | os.O_SYNC)
            register_fd(fd)
            self.fd_cache[file_path] = (fd, hf3fs_mount_point)
        return self.fd_cache[file_path]

    def _close_all(self, file_total_bytes):
        for fd, _ in self.fd_cache.values():
            os.truncate(fd, file_total_bytes)
            deregister_fd(fd)
            os.close(fd)
        self.fd_cache = {}

    def chunk_batch_pwrite(self, write_offsets):
        chunks = []
        chunk = []
        total = 0
        def add_chunk():
            nonlocal chunk, total
            if len(chunk) > 0:
                chunks.append(chunk)
                chunk = []
                total = 0

        for r in write_offsets:
            write_file_path, write_bytes, write_file_offset = r
            write_length = len(write_bytes)
            if write_length == 0:
                continue
            if write_length > self.write_buf_size:
                add_chunk()
                chunks.append([r])
            elif total + write_length > self.write_buf_size:
                add_chunk()
                chunk.append(r)
                total += write_length
            else:
                chunk.append(r)
                total += write_length
                if len(chunk) == self.max_ops:
                    add_chunk()
        add_chunk()
        return chunks

    def convert_to_pwrite_list(self, filepath, tensors, metadata):
        head = {}
        if metadata is not None:
             head["__metadata__"] = metadata
        dtype_dict = {
            torch.float64 : 'F64',
            torch.float32: 'F32',
            torch.float16 : 'F16',
            torch.bfloat16: 'BF16',
            torch.float8_e4m3fn: 'F8_E4M3',
            torch.int64 : 'I64',
            torch.int32:  'I32',
            torch.int16 : 'I16',
            torch.int8:  'I8',
            torch.uint8 : 'U8',
            torch.bool : 'BOOL'
        }
        cur_off = 0
        values = []
        for k, v in tensors.items():
            cur_len = v.numel() * v.element_size()
            item = dict(
                dtype = dtype_dict[v.dtype],
                shape = list(v.shape),
                data_offsets = [cur_off, cur_off + cur_len],
            )
            cur_off += cur_len
            head[k] = item
            values.append(v)
        head_bytes = json.dumps(head, ensure_ascii=True).replace(" ","").encode("utf8")
        n = np.array([len(head_bytes)], dtype = np.uint64).tobytes()
        assert np.frombuffer(n, dtype=np.int64)[0] == len(head_bytes)
        head_bytes = n + head_bytes
        p_list = []
        p_list.append((filepath, head_bytes, 0))
        cur_off = len(head_bytes)
        for v in values:
            data_bytes = tensor_to_bytes(v)
            p_list.append((filepath, data_bytes, cur_off))
            cur_off += len(data_bytes)
        return p_list

    def save_tensors(self, filepath, tensors, metadata = None):
        pwrite_list = self.convert_to_pwrite_list(filepath, tensors, metadata)
        file_total_bytes = sum([len(item[1]) for item in pwrite_list])
        for chunk in self.chunk_batch_pwrite(pwrite_list):
            if len(chunk) == 1:
                # 如果超过 self.write_buf_size 的数据,只允许单次 pwrite
                write_file_path, write_bytes, write_file_offset = chunk[0]
                fd, hf3fs_mount_point = self._open(write_file_path)
                iov = self._iov[hf3fs_mount_point]
                buf = self._buf[hf3fs_mount_point]
                ior = self._ior[hf3fs_mount_point]
                content_view = write_bytes
                _write = 0
                total = len(write_bytes)
                while _write < total:
                    to_write = min(self.write_buf_size, total-_write)
                    buf[:to_write] = content_view[_write:_write+to_write]
                    ior.prepare(iov[:to_write], False, fd, write_file_offset+_write)
                    submit_result = ior.submit()
                    total_waited = 0
                    results = []
                    while True:
                        res = submit_result.wait(max_results=1000, min_results=0, timeout=timedelta(seconds=0))
                        total_waited += len(res)
                        results += res
                        if total_waited == 1:
                            break
                        time.sleep(0.01)
                    write_len = results[0].result
                    assert write_len == to_write, f'hf3fs 返回的 write_len({write_len}) 不匹配 file_path={write_file_path} offset={write_file_offset} to_write={to_write}'
                    _write += write_len
            elif len(chunk) > 0:
                # 多次 pwrite,加起来的总和不能超过 self.write_buf_size,避免最后一个比较大,但是 buf 只剩很小,要提交很多次的问题
                # 这里只允许 batch write 同一个 mount point 的数据,不然比较难管理
                hf3fs_mount_point = self._open(chunk[0][0])[1]
                iov = self._iov[hf3fs_mount_point]
                buf = self._buf[hf3fs_mount_point]
                ior = self._ior[hf3fs_mount_point]
                ops = []
                buf_offsets = []
                buf_offset = 0
                for write_file_path, write_bytes, write_file_offset in chunk:
                    fd, h = self._open(write_file_path)
                    assert h == hf3fs_mount_point, f'不能 load 不同 mount point 的数据 {h} {hf3fs_mount_point}'
                    write_length = len(write_bytes)
                    op = [write_file_path, write_length, write_file_offset]
                    ops.append(op)
                    assert buf_offset+write_length <= self.write_buf_size, f'batch write 超过了 buf 最大长度 {self.write_buf_size}'
                    buf[buf_offset:buf_offset+write_length] = write_bytes
                    ior.prepare(iov[buf_offset:buf_offset+write_length], False, fd, write_file_offset, userdata=op)
                    buf_offsets.append((buf_offset, buf_offset+write_length))
                    buf_offset += write_length

                submit_result = ior.submit()
                total_waited = 0
                results = []
                while True:
                    res = submit_result.wait(max_results=1000, min_results=0, timeout=timedelta(seconds=0))
                    total_waited += len(res)
                    results += res
                    if total_waited == len(ops):
                        break
                    time.sleep(0.01)
                for result in results:
                    write_file_path, write_length, write_file_offset = result.userdata
                    assert result.result == write_length, f'hf3fs 返回的 write_len({result.result}) 不匹配 file_path={write_file_path} offset={write_file_offset} to_write={write_length}'
        self._close_all(file_total_bytes)

def save_file(tensors, filepath, metadata = None):
    DistWriter().save_tensors(filepath, tensors, metadata=metadata)