Create inference/generate_shards.py
Browse files- inference/generate_shards.py +327 -0
inference/generate_shards.py
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Shard Generator for Helion-OSC
|
| 3 |
+
Creates placeholder or actual safetensors shard files
|
| 4 |
+
|
| 5 |
+
This script helps you:
|
| 6 |
+
1. Generate placeholder shards for testing
|
| 7 |
+
2. Split a large model into 116 shards
|
| 8 |
+
3. Verify shard integrity
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import json
|
| 13 |
+
import os
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import Dict, List, Optional
|
| 16 |
+
import logging
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from safetensors.torch import save_file, load_file
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ShardGenerator:
|
| 26 |
+
"""Generate and manage model shards"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, output_dir: str, total_shards: int = 116):
|
| 29 |
+
"""
|
| 30 |
+
Initialize shard generator
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
output_dir: Directory to save shards
|
| 34 |
+
total_shards: Total number of shards to generate
|
| 35 |
+
"""
|
| 36 |
+
self.output_dir = Path(output_dir)
|
| 37 |
+
self.total_shards = total_shards
|
| 38 |
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
| 39 |
+
|
| 40 |
+
logger.info(f"Shard generator initialized")
|
| 41 |
+
logger.info(f"Output directory: {self.output_dir}")
|
| 42 |
+
logger.info(f"Total shards: {self.total_shards}")
|
| 43 |
+
|
| 44 |
+
def get_shard_name(self, shard_idx: int) -> str:
|
| 45 |
+
"""Get formatted shard name"""
|
| 46 |
+
return f"model-{shard_idx:05d}-of-{self.total_shards:05d}.safetensors"
|
| 47 |
+
|
| 48 |
+
def generate_placeholder_shards(
|
| 49 |
+
self,
|
| 50 |
+
shard_size_mb: float = 2800,
|
| 51 |
+
tensor_dtype: torch.dtype = torch.bfloat16
|
| 52 |
+
):
|
| 53 |
+
"""
|
| 54 |
+
Generate placeholder shards for testing
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
shard_size_mb: Target size per shard in MB
|
| 58 |
+
tensor_dtype: Data type for tensors
|
| 59 |
+
"""
|
| 60 |
+
logger.info("Generating placeholder shards...")
|
| 61 |
+
logger.info(f"Target shard size: {shard_size_mb} MB")
|
| 62 |
+
|
| 63 |
+
# Calculate tensor size to achieve target shard size
|
| 64 |
+
# bfloat16 = 2 bytes per element
|
| 65 |
+
bytes_per_element = 2 if tensor_dtype == torch.bfloat16 else 4
|
| 66 |
+
target_bytes = shard_size_mb * 1024 * 1024
|
| 67 |
+
num_elements = int(target_bytes / bytes_per_element)
|
| 68 |
+
|
| 69 |
+
# Create tensors in reasonable shapes
|
| 70 |
+
# For a transformer layer, we might have multiple weight matrices
|
| 71 |
+
tensor_shapes = self._generate_realistic_shapes(num_elements)
|
| 72 |
+
|
| 73 |
+
for shard_idx in tqdm(range(1, self.total_shards + 1), desc="Creating shards"):
|
| 74 |
+
shard_name = self.get_shard_name(shard_idx)
|
| 75 |
+
shard_path = self.output_dir / shard_name
|
| 76 |
+
|
| 77 |
+
# Generate random tensors for this shard
|
| 78 |
+
tensors = {}
|
| 79 |
+
for name, shape in tensor_shapes.items():
|
| 80 |
+
key = f"layer_{shard_idx}.{name}"
|
| 81 |
+
tensors[key] = torch.randn(shape, dtype=tensor_dtype)
|
| 82 |
+
|
| 83 |
+
# Save as safetensors
|
| 84 |
+
save_file(tensors, str(shard_path))
|
| 85 |
+
|
| 86 |
+
# Verify size
|
| 87 |
+
actual_size_mb = shard_path.stat().st_size / (1024 * 1024)
|
| 88 |
+
logger.debug(f"{shard_name}: {actual_size_mb:.2f} MB")
|
| 89 |
+
|
| 90 |
+
logger.info(f"✓ Generated {self.total_shards} placeholder shards")
|
| 91 |
+
|
| 92 |
+
def _generate_realistic_shapes(self, total_elements: int) -> Dict[str, tuple]:
|
| 93 |
+
"""
|
| 94 |
+
Generate realistic tensor shapes for a transformer layer
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
total_elements: Total number of elements to distribute
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Dictionary of tensor names and shapes
|
| 101 |
+
"""
|
| 102 |
+
# Typical transformer layer weights
|
| 103 |
+
hidden_size = 8192
|
| 104 |
+
intermediate_size = 28672
|
| 105 |
+
num_heads = 64
|
| 106 |
+
head_dim = 128
|
| 107 |
+
|
| 108 |
+
shapes = {
|
| 109 |
+
"self_attn.q_proj.weight": (hidden_size, hidden_size),
|
| 110 |
+
"self_attn.k_proj.weight": (hidden_size // 8, hidden_size), # KV heads
|
| 111 |
+
"self_attn.v_proj.weight": (hidden_size // 8, hidden_size),
|
| 112 |
+
"self_attn.o_proj.weight": (hidden_size, hidden_size),
|
| 113 |
+
"mlp.gate_proj.weight": (intermediate_size, hidden_size),
|
| 114 |
+
"mlp.up_proj.weight": (intermediate_size, hidden_size),
|
| 115 |
+
"mlp.down_proj.weight": (hidden_size, intermediate_size),
|
| 116 |
+
"input_layernorm.weight": (hidden_size,),
|
| 117 |
+
"post_attention_layernorm.weight": (hidden_size,),
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
return shapes
|
| 121 |
+
|
| 122 |
+
def split_large_model(
|
| 123 |
+
self,
|
| 124 |
+
model_state_dict: Dict[str, torch.Tensor],
|
| 125 |
+
max_shard_size_gb: float = 2.8
|
| 126 |
+
):
|
| 127 |
+
"""
|
| 128 |
+
Split a large model into shards
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
model_state_dict: Model weights dictionary
|
| 132 |
+
max_shard_size_gb: Maximum size per shard in GB
|
| 133 |
+
"""
|
| 134 |
+
logger.info("Splitting model into shards...")
|
| 135 |
+
|
| 136 |
+
max_shard_bytes = max_shard_size_gb * 1024 ** 3
|
| 137 |
+
|
| 138 |
+
current_shard = {}
|
| 139 |
+
current_size = 0
|
| 140 |
+
shard_idx = 1
|
| 141 |
+
weight_map = {}
|
| 142 |
+
|
| 143 |
+
for name, tensor in tqdm(model_state_dict.items(), desc="Processing weights"):
|
| 144 |
+
# Calculate tensor size
|
| 145 |
+
tensor_bytes = tensor.nelement() * tensor.element_size()
|
| 146 |
+
|
| 147 |
+
# Check if adding this tensor exceeds shard size
|
| 148 |
+
if current_size + tensor_bytes > max_shard_bytes and current_shard:
|
| 149 |
+
# Save current shard
|
| 150 |
+
shard_name = self.get_shard_name(shard_idx)
|
| 151 |
+
self._save_shard(current_shard, shard_name)
|
| 152 |
+
|
| 153 |
+
# Update weight map
|
| 154 |
+
for weight_name in current_shard.keys():
|
| 155 |
+
weight_map[weight_name] = shard_name
|
| 156 |
+
|
| 157 |
+
# Reset for next shard
|
| 158 |
+
current_shard = {}
|
| 159 |
+
current_size = 0
|
| 160 |
+
shard_idx += 1
|
| 161 |
+
|
| 162 |
+
# Add tensor to current shard
|
| 163 |
+
current_shard[name] = tensor
|
| 164 |
+
current_size += tensor_bytes
|
| 165 |
+
|
| 166 |
+
# Save final shard
|
| 167 |
+
if current_shard:
|
| 168 |
+
shard_name = self.get_shard_name(shard_idx)
|
| 169 |
+
self._save_shard(current_shard, shard_name)
|
| 170 |
+
|
| 171 |
+
for weight_name in current_shard.keys():
|
| 172 |
+
weight_map[weight_name] = shard_name
|
| 173 |
+
|
| 174 |
+
logger.info(f"✓ Model split into {shard_idx} shards")
|
| 175 |
+
|
| 176 |
+
# Save weight map index
|
| 177 |
+
self._save_index(weight_map, shard_idx)
|
| 178 |
+
|
| 179 |
+
return weight_map
|
| 180 |
+
|
| 181 |
+
def _save_shard(self, tensors: Dict[str, torch.Tensor], shard_name: str):
|
| 182 |
+
"""Save a shard file"""
|
| 183 |
+
shard_path = self.output_dir / shard_name
|
| 184 |
+
save_file(tensors, str(shard_path))
|
| 185 |
+
size_mb = shard_path.stat().st_size / (1024 * 1024)
|
| 186 |
+
logger.info(f"Saved {shard_name} ({size_mb:.2f} MB)")
|
| 187 |
+
|
| 188 |
+
def _save_index(self, weight_map: Dict[str, str], total_shards: int):
|
| 189 |
+
"""Save the weight map index file"""
|
| 190 |
+
index = {
|
| 191 |
+
"metadata": {
|
| 192 |
+
"total_size": sum(
|
| 193 |
+
(self.output_dir / shard).stat().st_size
|
| 194 |
+
for shard in set(weight_map.values())
|
| 195 |
+
),
|
| 196 |
+
"total_shards": total_shards,
|
| 197 |
+
"format": "safetensors",
|
| 198 |
+
"model_type": "helion-osc"
|
| 199 |
+
},
|
| 200 |
+
"weight_map": weight_map
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
index_path = self.output_dir / "model.safetensors.index.json"
|
| 204 |
+
with open(index_path, 'w') as f:
|
| 205 |
+
json.dump(index, f, indent=2)
|
| 206 |
+
|
| 207 |
+
logger.info(f"Saved index to {index_path}")
|
| 208 |
+
|
| 209 |
+
def verify_shards(self) -> bool:
|
| 210 |
+
"""Verify all shards can be loaded"""
|
| 211 |
+
logger.info("Verifying shards...")
|
| 212 |
+
|
| 213 |
+
all_valid = True
|
| 214 |
+
|
| 215 |
+
for shard_idx in tqdm(range(1, self.total_shards + 1), desc="Verifying"):
|
| 216 |
+
shard_name = self.get_shard_name(shard_idx)
|
| 217 |
+
shard_path = self.output_dir / shard_name
|
| 218 |
+
|
| 219 |
+
if not shard_path.exists():
|
| 220 |
+
logger.error(f"Missing: {shard_name}")
|
| 221 |
+
all_valid = False
|
| 222 |
+
continue
|
| 223 |
+
|
| 224 |
+
try:
|
| 225 |
+
# Try to load the shard
|
| 226 |
+
_ = load_file(str(shard_path))
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.error(f"Invalid {shard_name}: {e}")
|
| 229 |
+
all_valid = False
|
| 230 |
+
|
| 231 |
+
if all_valid:
|
| 232 |
+
logger.info("✓ All shards verified successfully")
|
| 233 |
+
else:
|
| 234 |
+
logger.error("✗ Some shards are missing or invalid")
|
| 235 |
+
|
| 236 |
+
return all_valid
|
| 237 |
+
|
| 238 |
+
def get_shard_stats(self) -> Dict:
|
| 239 |
+
"""Get statistics about shards"""
|
| 240 |
+
stats = {
|
| 241 |
+
"total_shards": self.total_shards,
|
| 242 |
+
"present_shards": 0,
|
| 243 |
+
"total_size_gb": 0,
|
| 244 |
+
"sizes_mb": []
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
for shard_idx in range(1, self.total_shards + 1):
|
| 248 |
+
shard_name = self.get_shard_name(shard_idx)
|
| 249 |
+
shard_path = self.output_dir / shard_name
|
| 250 |
+
|
| 251 |
+
if shard_path.exists():
|
| 252 |
+
stats["present_shards"] += 1
|
| 253 |
+
size_mb = shard_path.stat().st_size / (1024 * 1024)
|
| 254 |
+
stats["sizes_mb"].append(size_mb)
|
| 255 |
+
stats["total_size_gb"] += size_mb / 1024
|
| 256 |
+
|
| 257 |
+
if stats["sizes_mb"]:
|
| 258 |
+
stats["avg_size_mb"] = np.mean(stats["sizes_mb"])
|
| 259 |
+
stats["min_size_mb"] = np.min(stats["sizes_mb"])
|
| 260 |
+
stats["max_size_mb"] = np.max(stats["sizes_mb"])
|
| 261 |
+
|
| 262 |
+
return stats
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def main():
|
| 266 |
+
"""CLI interface"""
|
| 267 |
+
import argparse
|
| 268 |
+
|
| 269 |
+
parser = argparse.ArgumentParser(description="Helion-OSC Shard Generator")
|
| 270 |
+
parser.add_argument(
|
| 271 |
+
"output_dir",
|
| 272 |
+
type=str,
|
| 273 |
+
help="Output directory for shards"
|
| 274 |
+
)
|
| 275 |
+
parser.add_argument(
|
| 276 |
+
"--action",
|
| 277 |
+
choices=["generate", "verify", "stats"],
|
| 278 |
+
default="generate",
|
| 279 |
+
help="Action to perform"
|
| 280 |
+
)
|
| 281 |
+
parser.add_argument(
|
| 282 |
+
"--total-shards",
|
| 283 |
+
type=int,
|
| 284 |
+
default=116,
|
| 285 |
+
help="Total number of shards"
|
| 286 |
+
)
|
| 287 |
+
parser.add_argument(
|
| 288 |
+
"--shard-size",
|
| 289 |
+
type=float,
|
| 290 |
+
default=2800,
|
| 291 |
+
help="Target shard size in MB"
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
args = parser.parse_args()
|
| 295 |
+
|
| 296 |
+
generator = ShardGenerator(
|
| 297 |
+
output_dir=args.output_dir,
|
| 298 |
+
total_shards=args.total_shards
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
if args.action == "generate":
|
| 302 |
+
logger.info("Generating placeholder shards for testing...")
|
| 303 |
+
logger.warning("Note: These are random tensors for testing only!")
|
| 304 |
+
generator.generate_placeholder_shards(shard_size_mb=args.shard_size)
|
| 305 |
+
|
| 306 |
+
elif args.action == "verify":
|
| 307 |
+
generator.verify_shards()
|
| 308 |
+
|
| 309 |
+
elif args.action == "stats":
|
| 310 |
+
stats = generator.get_shard_stats()
|
| 311 |
+
print("\n" + "="*80)
|
| 312 |
+
print("SHARD STATISTICS")
|
| 313 |
+
print("="*80)
|
| 314 |
+
print(f"Total Shards: {stats['total_shards']}")
|
| 315 |
+
print(f"Present Shards: {stats['present_shards']}")
|
| 316 |
+
print(f"Total Size: {stats['total_size_gb']:.2f} GB")
|
| 317 |
+
|
| 318 |
+
if stats['present_shards'] > 0:
|
| 319 |
+
print(f"Average Size: {stats['avg_size_mb']:.2f} MB")
|
| 320 |
+
print(f"Min Size: {stats['min_size_mb']:.2f} MB")
|
| 321 |
+
print(f"Max Size: {stats['max_size_mb']:.2f} MB")
|
| 322 |
+
|
| 323 |
+
print("="*80)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
if __name__ == "__main__":
|
| 327 |
+
main()
|