File size: 3,244 Bytes
7ac5980
 
e13c497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac5980
 
e13c497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-2b
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-2b-5e-sw-asr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: sw
      split: test
      args: sw
    metrics:
    - name: Wer
      type: wer
      value: 0.999932730470214
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-2b-5e-sw-asr

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 0.9999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.7865        | 0.2179 | 400  | inf             | 0.7489 |
| 0.599         | 0.4357 | 800  | inf             | 0.7282 |
| 0.5505        | 0.6536 | 1200 | inf             | 0.6650 |
| 0.5238        | 0.8715 | 1600 | inf             | 0.7014 |
| 0.4933        | 1.0893 | 2000 | inf             | 0.5907 |
| 0.4488        | 1.3072 | 2400 | inf             | 0.5622 |
| 0.4442        | 1.5251 | 2800 | inf             | 0.5664 |
| 0.4353        | 1.7429 | 3200 | inf             | 0.5418 |
| 0.4059        | 1.9608 | 3600 | inf             | 0.5334 |
| 0.3737        | 2.1786 | 4000 | inf             | 0.5037 |
| 0.3547        | 2.3965 | 4400 | inf             | 0.5097 |
| 0.3594        | 2.6144 | 4800 | inf             | 0.5031 |
| 0.563         | 2.8322 | 5200 | inf             | 0.8574 |
| 1.4779        | 3.0501 | 5600 | inf             | 0.9908 |
| 2.4352        | 3.2680 | 6000 | nan             | 0.9946 |
| 214.8165      | 3.4858 | 6400 | nan             | 0.9998 |
| 0.0           | 3.7037 | 6800 | nan             | 0.9996 |
| 0.0           | 3.9216 | 7200 | nan             | 0.9999 |
| 0.0           | 4.1394 | 7600 | nan             | 0.9997 |
| 0.0           | 4.3573 | 8000 | nan             | 0.9997 |
| 0.0           | 4.5752 | 8400 | nan             | 0.9996 |
| 0.0           | 4.7930 | 8800 | nan             | 0.9999 |


### Framework versions

- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 3.6.0
- Tokenizers 0.22.0