File size: 10,607 Bytes
091f734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
---
license: mit
datasets:
- Somayeh-h/Nordland
- OPR-Project/OxfordRobotCar_OpenPlaceRecognition
language:
- en
metrics:
- recall_at_1
- recall_at_5
pipeline_tag: image-feature-extraction
tags:
- place-recognition
- visual-place-recognition
- computer-vision
- transformer
- 3d-vision
library:
- pytorch
- lightning
---
# Model Card for UniPR-3D
UniPR-3D is a universal visual place recognition (VPR) framework that supports both **single-frame** and **sequence-to-sequence** matching. It leverages **3D visual geometry grounded tokens** within a transformer architecture to produce robust, viewpoint-invariant descriptors for long-term place recognition under challenging environmental variations (e.g., seasonal, weather, lighting, and viewpoint changes).
## Model Details
### Model Description
- **Developed by:** Tianchen Deng, Xun Chen, Ziming Li, Hongming Shen, Danwei Wang, Javier Civera, Hesheng Wang
- **Shared by:** Tianchen Deng
- **Model type:** Vision Transformer with 3D-aware token aggregation for visual place recognition
- **Language(s):** English (dataset metadata); model is vision-only
- **License:** MIT
### Model Sources
- **Repository:** [repo](https://github.com/dtc111111/UniPR-3D)
- **Paper:** [UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer](https://arxiv.org/abs/2512.21078) (arXiv:2512.21078, 2025)
- **Demo:** No demo available
## Uses
### Direct Use
This model can be used **out-of-the-box** to extract compact, discriminative global descriptors from:
- Single RGB images (for frame-to-frame VPR)
- Sequences of images (for sequence-to-sequence VPR)
These descriptors are suitable for large-scale localization, robot navigation, and SLAM systems requiring robustness to appearance changes.
### Downstream Use
- Integration into **visual SLAM** or **long-term autonomous navigation** pipelines
- Replacement for traditional VPR backbones (e.g., NetVLAD, MixVPR, EigenPlaces)
- Fine-tuning on domain-specific datasets (e.g., underground, aerial, or underwater environments)
### Out-of-Scope Use
- **Not intended** for real-time inference on low-power embedded devices without optimization (latency ~8.23 ms on RTX 4090)
- **Not designed** for non-visual modalities (e.g., LiDAR, audio, text)
- Performance may degrade in **extreme occlusion**, **textureless scenes**, or **indoor environments not seen during training**
## Bias, Risks, and Limitations
- Trained primarily on **urban street-level imagery** (GSV-Cities, Mapillary MSLS), so generalization to rural, indoor, or non-Western cities may be limited
- Inherits biases from training data (e.g., geographic overrepresentation of North America/Europe)
- No explicit fairness or demographic considerations (as it is a geometric vision model)
### Recommendations
- Evaluate on target domain before deployment
- Monitor recall performance on your specific dataset using standard VPR metrics (R@1, R@5)
## How to Get Started with the Model
The exact inference script is provided in the GitHub repo (`eval_lora.py`, `main_ft.py`). Pretrained weights are available on Hugging Face or via the repo release.
## Training Details
### Training Data
- **Single-frame model**: Trained on [GSV-Cities](https://github.com/amaralibey/gsv-cities)
- **Multi-frame model**: Trained on [Mapillary Street-Level Sequences (MSLS)](https://www.mapillary.com/dataset/places)
- Both datasets contain millions of geo-tagged urban street-view images across diverse cities, seasons, and conditions.
### Training Procedure
#### Preprocessing
- Images resized to 518Γ518
- Sequences sampled with spatial proximity for multi-frame training
#### Training Hyperparameters
- **Backbone**: DINOv2 (ViT-large)
- **Optimization**: AdamW, learning rate scheduling
- **Loss**: Multi-similarity loss with pair weighting
- **Training regime**: Mixed-precision (fp16) on NVIDIA GPUs
#### Speeds, Sizes, Times
- **Inference latency**: Single frame - 8.23 ms per image (RTX 4090)
- **Descriptor dimension**: 17152 (for UniPR-3D)
- Training time: Not disclosed (multi-day runs on multi-GPU setup)
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
- Single frame evaluation:
- <a href="https://codalab.lisn.upsaclay.fr/competitions/865">MSLS Challenge</a>, where you upload your predictions to their server for evaluation.
- Single-frame <a href="https://www.mapillary.com/dataset/places">MSLS</a> Validation set
- Nordland dataset, <a href="https://data.ciirc.cvut.cz/public/projects/2015netVLAD/Pittsburgh250k/">Pittsburgh</a> dataset and SPED dataset, you may download them from <a href="https://surfdrive.surf.nl/index.php/s/sbZRXzYe3l0v67W">here</a>, aligned with DINOv2 SALAD.
- Multi-frame evaluation:
- Multi-frame <a href="https://www.mapillary.com/dataset/places">MSLS</a> Validation set
- Two sequence from <a href="https://robotcar-dataset.robots.ox.ac.uk/datasets/">Oxford RobotCar</a>, you may download them <a href="https://entuedu-my.sharepoint.com/personal/heshan001_e_ntu_edu_sg/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fheshan001%5Fe%5Fntu%5Fedu%5Fsg%2FDocuments%2Fcasevpr%5Fdatasets%2Foxford%5Frobotcar&viewid=e5dcb0e9%2Db23f%2D44cf%2Da843%2D7837d3064c2e&ga=1">here</a>.
- 2014-12-16-18-44-24 (winter night) query to 2014-11-18-13-20-12 (fall day) db
- 2014-11-14-16-34-33 (fall night) query to 2015-11-13-10-28-08 (fall day) db
- <a href="https://github.com/gmberton/VPR-datasets-downloader/blob/main/download_nordland.py">Nordland (filtered) dataset</a>
#### Factors
- Seasonal variation (summer β winter)
- Day vs. night
- Weather (sunny, rainy, snowy)
- Viewpoint change (lateral shift, orientation)
#### Metrics
- **Recall@K (R@1, R@5, R@10)**: Standard metric for VPR β fraction of queries with correct match in top-K retrieved database images
### Results
#### Summary
Our method achieves significantly higher recall than competing approaches, achieving new state-of-the-art performance on both single and multiple frame benchmarks.
##### Single-frame matching results
<style>
table, th, td {
border-collapse: collapse;
text-align: center;
}
</style>
<table>
<tr>
<th colspan="2"></th>
<th colspan="2">MSLS Challenge</th>
<th colspan="2">MSLS Val</th>
<th colspan="2">NordLand</th>
<th colspan="2">Pitts250k-test</th>
<th colspan="2">SPED</th>
</tr>
<tr>
<th>Method</th>
<th>Latency (ms)</th>
<th>R@1</th>
<th>R@5</th>
<th>R@1</th>
<th>R@5</th>
<th>R@1</th>
<th>R@5</th>
<th>R@1</th>
<th>R@5</th>
<th>R@1</th>
<th>R@5</th>
</tr>
<tr>
<td>MixVPR</td>
<td>1.37</td>
<td>64.0</td>
<td>75.9</td>
<td>88.0</td>
<td>92.7</td>
<td>58.4</td>
<td>74.6</td>
<td>94.6</td>
<td><u>98.3</u></td>
<td>85.2</td>
<td>92.1</td>
</tr>
<tr>
<td>EigenPlaces</td>
<td>2.65</td>
<td>67.4</td>
<td>77.1</td>
<td>89.3</td>
<td>93.7</td>
<td>54.4</td>
<td>68.8</td>
<td>94.1</td>
<td>98.0</td>
<td>69.9</td>
<td>82.9</td>
</tr>
<tr>
<td>DINOv2 SALAD</td>
<td>2.41</td>
<td><u>73.0</u></td>
<td><u>86.8</u></td>
<td><u>91.2</u></td>
<td><u>95.3</u></td>
<td><u>69.6</u></td>
<td><u>84.4</u></td>
<td><u>94.5</u></td>
<td><b>98.7</b></td>
<td><u>89.5</u></td>
<td><u>94.4</u></td>
</tr>
<tr>
<td>UniPR-3D (ours)</td>
<td>8.23</td>
<td><b>74.3</b></td>
<td><b>87.5</b></td>
<td><b>91.4</b></td>
<td><b>96.0</b></td>
<td><b>76.2</b></td>
<td><b>87.3</b></td>
<td><b>94.9</b></td>
<td>98.1</td>
<td><b>89.6</b></td>
<td><b>94.5</b></td>
</tr>
</table>
##### Sequence matching results
<table>
<tr>
<th></th>
<th colspan="3">MSLS Val</th>
<th colspan="3">NordLand</th>
<th colspan="3">Oxford1</th>
<th colspan="3">Oxford2</th>
</tr>
<tr>
<th>Method</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
<tr>
<td>SeqMatchNet</td>
<td>65.5</td>
<td>77.5</td>
<td>80.3</td>
<td>56.1</td>
<td>71.4</td>
<td>76.9</td>
<td>36.8</td>
<td>43.3</td>
<td>48.3</td>
<td>27.9</td>
<td>38.5</td>
<td>45.3</td>
</tr>
<tr>
<td>SeqVLAD</td>
<td>89.9</td>
<td>92.4</td>
<td>94.1</td>
<td>65.5</td>
<td>75.2</td>
<td>80.0</td>
<td>58.4</td>
<td>72.8</td>
<td>80.8</td>
<td>19.1</td>
<td>29.9</td>
<td>37.3</td>
</tr>
<tr>
<td>CaseVPR</td>
<td><u>91.2</u></td>
<td><u>94.1</u></td>
<td><u>95.0</u></td>
<td><u>84.1</u></td>
<td><u>89.9</u></td>
<td><u>92.2</u></td>
<td><u>90.5</u></td>
<td><u>95.2</u></td>
<td><u>96.5</u></td>
<td><u>72.8</u></td>
<td><u>85.8</u></td>
<td><u>89.9</u></td>
</tr>
<tr>
<td>UniPR-3D (ours)</td>
<td><b>93.7</b></td>
<td><b>95.7</b></td>
<td><b>96.9</b></td>
<td><b>86.8</b></td>
<td><b>91.7</b></td>
<td><b>93.8</b></td>
<td><b>95.4</b></td>
<td><b>98.1</b></td>
<td><b>98.7</b></td>
<td><b>80.6</b></td>
<td><b>90.3</b></td>
<td><b>93.9</b></td>
</tr>
</table>
## Compute Infrastructure
### Hardware
- NVIDIA RTX 4090
### Software
- Python 3.11.10 + CUDA 12.1
- Based on [SALAD](https://github.com/serizba/salad) and [VGGT](https://github.com/facebookresearch/vggt)
## Citation
**BibTeX:**
```bibtex
@article{deng2025unipr3d,
title={UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer},
author={Deng, Tianchen and Chen, Xun and Li, Ziming and Shen, Hongming and Wang, Danwei and Civera, Javier and Wang, Hesheng},
journal={arXiv preprint arXiv:2512.21078},
year={2025}
}
```
**APA:**
Deng, T., Chen, X., Li, Z., Shen, H., Wang, D., Civera, J., & Wang, H. (2025). UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer. *arXiv preprint arXiv:2512.21078*.
## Contact
For questions, pretrained model access, or qualitative comparisons, please contact:
π§ **Tianchen Deng** β [[email protected]](mailto:[email protected])
---
> π **Acknowledgement**: This implementation builds upon [SALAD](https://github.com/serizba/salad) and [VGGT](https://github.com/facebookresearch/vggt). Please cite those works if you use their components. |