--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: guj-eng-code-switch-bert-multilingual-data3 results: [] --- # guj-eng-code-switch-bert-multilingual-data3 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - Precision: 0.9528 - Recall: 0.9679 - F1: 0.9603 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.167 | 1.0 | 247 | 0.1051 | 0.9109 | 0.9497 | 0.9299 | 0.9729 | | 0.0701 | 2.0 | 494 | 0.0791 | 0.9501 | 0.9684 | 0.9592 | 0.9803 | | 0.0487 | 3.0 | 741 | 0.0766 | 0.9528 | 0.9679 | 0.9603 | 0.9815 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.22.1