File size: 18,749 Bytes
972a35a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# MIT License
# Copyright (c) [2023] [Anima-Lab]
# This code is adapted from https://github.com/NVlabs/edm/blob/main/generate.py.
# The original code is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License, which is can be found at licenses/LICENSE_EDM.txt.
import argparse
import random
import PIL.Image
import lmdb
import numpy as np
import torch
import torch.distributed as dist
from torch.multiprocessing import Process
from tqdm import tqdm
from models.maskdit import Precond_models, DiT_models
from utils import *
import autoencoder
# ----------------------------------------------------------------------------
# Proposed EDM sampler (Algorithm 2).
def edm_sampler(
net, latents, class_labels=None, cfg_scale=None, feat=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=0.002, sigma_max=80, rho=7,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (
sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
# Main sampling loop.
x_next = latents.to(torch.float64) * t_steps[0]
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
t_hat = net.round_sigma(t_cur + gamma * t_cur)
x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
denoised = net(x_hat.float(), t_hat, class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
denoised = net(x_next.float(), t_next, class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
d_prime = (x_next - denoised) / t_next
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next
# ----------------------------------------------------------------------------
# Generalized ablation sampler, representing the superset of all sampling
# methods discussed in the paper.
def ablation_sampler(
net, latents, class_labels=None, cfg_scale=None, feat=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=None, sigma_max=None, rho=7,
solver='heun', discretization='edm', schedule='linear', scaling='none',
epsilon_s=1e-3, C_1=0.001, C_2=0.008, M=1000, alpha=1,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
assert solver in ['euler', 'heun']
assert discretization in ['vp', 've', 'iddpm', 'edm']
assert schedule in ['vp', 've', 'linear']
assert scaling in ['vp', 'none']
# Helper functions for VP & VE noise level schedules.
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t))
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (
sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
ve_sigma = lambda t: t.sqrt()
ve_sigma_deriv = lambda t: 0.5 / t.sqrt()
ve_sigma_inv = lambda sigma: sigma ** 2
# Select default noise level range based on the specified time step discretization.
if sigma_min is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s)
sigma_min = {'vp': vp_def, 've': 0.02, 'iddpm': 0.002, 'edm': 0.002}[discretization]
if sigma_max is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1)
sigma_max = {'vp': vp_def, 've': 100, 'iddpm': 81, 'edm': 80}[discretization]
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
# Compute corresponding betas for VP.
vp_beta_d = 2 * (np.log(sigma_min ** 2 + 1) / epsilon_s - np.log(sigma_max ** 2 + 1)) / (epsilon_s - 1)
vp_beta_min = np.log(sigma_max ** 2 + 1) - 0.5 * vp_beta_d
# Define time steps in terms of noise level.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
if discretization == 'vp':
orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1)
sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps)
elif discretization == 've':
orig_t_steps = (sigma_max ** 2) * ((sigma_min ** 2 / sigma_max ** 2) ** (step_indices / (num_steps - 1)))
sigma_steps = ve_sigma(orig_t_steps)
elif discretization == 'iddpm':
u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device)
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
for j in torch.arange(M, 0, -1, device=latents.device): # M, ..., 1
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
else:
assert discretization == 'edm'
sigma_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (
sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
# Define noise level schedule.
if schedule == 'vp':
sigma = vp_sigma(vp_beta_d, vp_beta_min)
sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min)
sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min)
elif schedule == 've':
sigma = ve_sigma
sigma_deriv = ve_sigma_deriv
sigma_inv = ve_sigma_inv
else:
assert schedule == 'linear'
sigma = lambda t: t
sigma_deriv = lambda t: 1
sigma_inv = lambda sigma: sigma
# Define scaling schedule.
if scaling == 'vp':
s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt()
s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3)
else:
assert scaling == 'none'
s = lambda t: 1
s_deriv = lambda t: 0
# Compute final time steps based on the corresponding noise levels.
t_steps = sigma_inv(net.round_sigma(sigma_steps))
t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])]) # t_N = 0
# Main sampling loop.
t_next = t_steps[0]
x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next))
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0
t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur)))
x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s(
t_hat) * S_noise * randn_like(x_cur)
# Euler step.
h = t_next - t_hat
denoised = net(x_hat.float() / s(t_hat), sigma(t_hat), class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s(
t_hat) / sigma(t_hat) * denoised
x_prime = x_hat + alpha * h * d_cur
t_prime = t_hat + alpha * h
# Apply 2nd order correction.
if solver == 'euler' or i == num_steps - 1:
x_next = x_hat + h * d_cur
else:
assert solver == 'heun'
denoised = net(x_prime.float() / s(t_prime), sigma(t_prime), class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv(
t_prime) * s(t_prime) / sigma(t_prime) * denoised
x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime)
return x_next
# ----------------------------------------------------------------------------
def retrieve_n_features(batch_size, feat_path, feat_dim, num_classes, device, split='train', sample_mode='rand_full'):
env = lmdb.open(os.path.join(feat_path, split), readonly=True, lock=False, create=False)
# Start a new read transaction
with env.begin() as txn:
# Read all images in one single transaction, with one lock
# We could split this up into multiple transactions if needed
length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
if sample_mode == 'rand_full':
image_ids = random.sample(range(length // 2), batch_size)
image_ids_y = image_ids
elif sample_mode == 'rand_repeat':
image_ids = random.sample(range(length // 2), 1) * batch_size
image_ids_y = image_ids
elif sample_mode == 'rand_y':
image_ids = random.sample(range(length // 2), 1) * batch_size
image_ids_y = random.sample(range(length // 2), batch_size)
else:
raise NotImplementedError
features, labels = [], []
for image_id, image_id_y in zip(image_ids, image_ids_y):
feat_bytes = txn.get(f'feat-{str(image_id)}'.encode('utf-8'))
y_bytes = txn.get(f'y-{str(image_id_y)}'.encode('utf-8'))
feat = np.frombuffer(feat_bytes, dtype=np.float32).reshape([feat_dim]).copy()
y = int(y_bytes.decode('utf-8'))
features.append(feat)
labels.append(y)
features = torch.from_numpy(np.stack(features)).to(device)
labels = torch.from_numpy(np.array(labels)).to(device)
class_labels = torch.zeros([batch_size, num_classes], device=device)
if num_classes > 0:
class_labels = torch.eye(num_classes, device=device)[labels]
assert features.shape[0] == class_labels.shape[0] == batch_size
return features, class_labels
@torch.no_grad()
def generate_with_net(args, net, device, rank, size):
seeds = args.seeds
num_batches = ((len(seeds) - 1) // (args.max_batch_size * size) + 1) * size
all_batches = torch.as_tensor(seeds).tensor_split(num_batches)
rank_batches = all_batches[rank:: size]
net.eval()
# Setup sampler
sampler_kwargs = dict(num_steps=args.num_steps, S_churn=args.S_churn,
solver=args.solver, discretization=args.discretization,
schedule=args.schedule, scaling=args.scaling)
sampler_kwargs = {key: value for key, value in sampler_kwargs.items() if value is not None}
have_ablation_kwargs = any(x in sampler_kwargs for x in ['solver', 'discretization', 'schedule', 'scaling'])
sampler_fn = ablation_sampler if have_ablation_kwargs else edm_sampler
mprint(f"sampler_kwargs: {sampler_kwargs}, \nsampler fn: {sampler_fn.__name__}")
# Setup autoencoder
vae = autoencoder.get_model(args.pretrained_path).to(device)
# generate images
mprint(f'Generating {len(seeds)} images to "{args.outdir}"...')
for batch_seeds in tqdm(rank_batches, unit='batch', disable=(rank != 0)):
dist.barrier()
batch_size = len(batch_seeds)
if batch_size == 0:
continue
# Pick latents and labels.
rnd = StackedRandomGenerator(device, batch_seeds)
latents = rnd.randn([batch_size, net.img_channels, net.img_resolution, net.img_resolution], device=device)
class_labels = torch.zeros([batch_size, net.num_classes], device=device)
if net.num_classes:
class_labels = torch.eye(net.num_classes, device=device)[
rnd.randint(net.num_classes, size=[batch_size], device=device)]
if args.class_idx is not None:
class_labels[:, :] = 0
class_labels[:, args.class_idx] = 1
# retrieve features from training set [support random only]
feat = None
# Generate images.
def recur_decode(z):
try:
return vae.decode(z)
except: # reduce the batch for vae decoder but two forward passes when OOM happens occasionally
assert z.shape[2] % 2 == 0
z1, z2 = z.tensor_split(2)
return torch.cat([recur_decode(z1), recur_decode(z2)])
with torch.no_grad():
z = sampler_fn(net, latents.float(), class_labels.float(), randn_like=rnd.randn_like,
cfg_scale=args.cfg_scale, feat=feat, **sampler_kwargs).float()
images = recur_decode(z)
# Save images.
images_np = images.add_(1).mul(127.5).clamp_(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
# images_np = (images * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
for seed, image_np in zip(batch_seeds, images_np):
image_dir = os.path.join(args.outdir, f'{seed - seed % 1000:06d}') if args.subdirs else args.outdir
os.makedirs(image_dir, exist_ok=True)
image_path = os.path.join(image_dir, f'{seed:06d}.png')
if image_np.shape[2] == 1:
PIL.Image.fromarray(image_np[:, :, 0], 'L').save(image_path)
else:
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
def generate(args):
device = torch.device("cuda")
mprint(f'cf_scale: {args.cfg_scale}')
if args.global_rank == 0:
os.makedirs(args.outdir, exist_ok=True)
logger = Logger(file_name=f'{args.outdir}/log.txt', file_mode="a+", should_flush=True)
# Create model:
net = Precond_models[args.precond](
img_resolution=args.image_size,
img_channels=args.image_channels,
num_classes=args.num_classes,
model_type=args.model_type,
use_decoder=args.use_decoder,
mae_loss_coef=args.mae_loss_coef,
pad_cls_token=args.pad_cls_token,
ext_feature_dim=args.ext_feature_dim
).to(device)
mprint(
f"{args.model_type} (use_decoder: {args.use_decoder}) Model Parameters: {sum(p.numel() for p in net.parameters()):,}")
# Load checkpoints
ckpt = torch.load(args.ckpt_path, map_location=device)
net.load_state_dict(ckpt['ema'])
mprint(f'Load weights from {args.ckpt_path}')
generate_with_net(args, net, device)
# Done.
cleanup()
if args.global_rank == 0:
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('sampling parameters')
# ddp
parser.add_argument('--num_proc_node', type=int, default=1, help='The number of nodes in multi node env.')
parser.add_argument('--num_process_per_node', type=int, default=1, help='number of gpus')
parser.add_argument('--node_rank', type=int, default=0, help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0, help='rank of process in the node')
parser.add_argument('--master_address', type=str, default='localhost', help='address for master')
# sampling
parser.add_argument("--feat_path", type=str, default='')
parser.add_argument("--ext_feature_dim", type=int, default=0)
parser.add_argument('--ckpt_path', type=str, required=True, help='Network pickle filename')
parser.add_argument('--outdir', type=str, required=True, help='sampling results save filename')
parser.add_argument('--seeds', type=parse_int_list, default='0-63', help='Random seeds (e.g. 1,2,5-10)')
parser.add_argument('--subdirs', action='store_true', help='Create subdirectory for every 1000 seeds')
parser.add_argument('--class_idx', type=int, default=None, help='Class label [default: random]')
parser.add_argument('--max_batch_size', type=int, default=64, help='Maximum batch size per GPU')
parser.add_argument("--cfg_scale", type=parse_float_none, default=None, help='None = no guidance, by default = 4.0')
parser.add_argument('--num_steps', type=int, default=18, help='Number of sampling steps')
parser.add_argument('--S_churn', type=int, default=0, help='Stochasticity strength')
parser.add_argument('--solver', type=str, default=None, choices=['euler', 'heun'], help='Ablate ODE solver')
parser.add_argument('--discretization', type=str, default=None, choices=['vp', 've', 'iddpm', 'edm'],
help='Ablate ODE solver')
parser.add_argument('--schedule', type=str, default=None, choices=['vp', 've', 'linear'],
help='Ablate noise schedule sigma(t)')
parser.add_argument('--scaling', type=str, default=None, choices=['vp', 'none'], help='Ablate signal scaling s(t)')
parser.add_argument('--pretrained_path', type=str, default='assets/stable_diffusion/autoencoder_kl.pth',
help='Autoencoder ckpt')
# model
parser.add_argument("--image_size", type=int, default=32)
parser.add_argument("--image_channels", type=int, default=4)
parser.add_argument("--num_classes", type=int, default=1000, help='0 means unconditional')
parser.add_argument("--model_type", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2")
parser.add_argument('--precond', type=str, choices=['vp', 've', 'edm'], default='edm', help='precond train & loss')
parser.add_argument("--use_decoder", type=str2bool, default=False)
parser.add_argument("--pad_cls_token", type=str2bool, default=False)
parser.add_argument('--mae_loss_coef', type=float, default=0, help='0 means no MAE loss')
parser.add_argument('--sample_mode', type=str, default='rand_full', help='[rand_full, rand_repeat]')
args = parser.parse_args()
args.global_size = args.num_proc_node * args.num_process_per_node
size = args.num_process_per_node
if size > 1:
processes = []
for rank in range(size):
args.local_rank = rank
args.global_rank = rank + args.node_rank * args.num_process_per_node
p = Process(target=init_processes, args=(generate, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
print('Single GPU run')
assert args.global_size == 1 and args.local_rank == 0
args.global_rank = 0
init_processes(generate, args)
|