File size: 18,749 Bytes
972a35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# MIT License

# Copyright (c) [2023] [Anima-Lab]


# This code is adapted from https://github.com/NVlabs/edm/blob/main/generate.py. 
# The original code is licensed under a Creative Commons 
# Attribution-NonCommercial-ShareAlike 4.0 International License, which is can be found at licenses/LICENSE_EDM.txt. 

import argparse
import random

import PIL.Image
import lmdb
import numpy as np

import torch
import torch.distributed as dist
from torch.multiprocessing import Process
from tqdm import tqdm

from models.maskdit import Precond_models, DiT_models
from utils import *
import autoencoder


# ----------------------------------------------------------------------------
# Proposed EDM sampler (Algorithm 2).

def edm_sampler(
        net, latents, class_labels=None, cfg_scale=None, feat=None, randn_like=torch.randn_like,
        num_steps=18, sigma_min=0.002, sigma_max=80, rho=7,
        S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
    # Adjust noise levels based on what's supported by the network.
    sigma_min = max(sigma_min, net.sigma_min)
    sigma_max = min(sigma_max, net.sigma_max)

    # Time step discretization.
    step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
    t_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (
                sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
    t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])  # t_N = 0

    # Main sampling loop.
    x_next = latents.to(torch.float64) * t_steps[0]
    for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):  # 0, ..., N-1
        x_cur = x_next

        # Increase noise temporarily.
        gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
        t_hat = net.round_sigma(t_cur + gamma * t_cur)
        x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * randn_like(x_cur)

        # Euler step.
        denoised = net(x_hat.float(), t_hat, class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
        d_cur = (x_hat - denoised) / t_hat
        x_next = x_hat + (t_next - t_hat) * d_cur

        # Apply 2nd order correction.
        if i < num_steps - 1:
            denoised = net(x_next.float(), t_next, class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
            d_prime = (x_next - denoised) / t_next
            x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)

    return x_next


# ----------------------------------------------------------------------------
# Generalized ablation sampler, representing the superset of all sampling
# methods discussed in the paper.

def ablation_sampler(
        net, latents, class_labels=None, cfg_scale=None, feat=None, randn_like=torch.randn_like,
        num_steps=18, sigma_min=None, sigma_max=None, rho=7,
        solver='heun', discretization='edm', schedule='linear', scaling='none',
        epsilon_s=1e-3, C_1=0.001, C_2=0.008, M=1000, alpha=1,
        S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
    assert solver in ['euler', 'heun']
    assert discretization in ['vp', 've', 'iddpm', 'edm']
    assert schedule in ['vp', 've', 'linear']
    assert scaling in ['vp', 'none']

    # Helper functions for VP & VE noise level schedules.
    vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
    vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t))
    vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (
                sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
    ve_sigma = lambda t: t.sqrt()
    ve_sigma_deriv = lambda t: 0.5 / t.sqrt()
    ve_sigma_inv = lambda sigma: sigma ** 2

    # Select default noise level range based on the specified time step discretization.
    if sigma_min is None:
        vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s)
        sigma_min = {'vp': vp_def, 've': 0.02, 'iddpm': 0.002, 'edm': 0.002}[discretization]
    if sigma_max is None:
        vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1)
        sigma_max = {'vp': vp_def, 've': 100, 'iddpm': 81, 'edm': 80}[discretization]

    # Adjust noise levels based on what's supported by the network.
    sigma_min = max(sigma_min, net.sigma_min)
    sigma_max = min(sigma_max, net.sigma_max)

    # Compute corresponding betas for VP.
    vp_beta_d = 2 * (np.log(sigma_min ** 2 + 1) / epsilon_s - np.log(sigma_max ** 2 + 1)) / (epsilon_s - 1)
    vp_beta_min = np.log(sigma_max ** 2 + 1) - 0.5 * vp_beta_d

    # Define time steps in terms of noise level.
    step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
    if discretization == 'vp':
        orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1)
        sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps)
    elif discretization == 've':
        orig_t_steps = (sigma_max ** 2) * ((sigma_min ** 2 / sigma_max ** 2) ** (step_indices / (num_steps - 1)))
        sigma_steps = ve_sigma(orig_t_steps)
    elif discretization == 'iddpm':
        u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device)
        alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
        for j in torch.arange(M, 0, -1, device=latents.device):  # M, ..., 1
            u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
        u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
        sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
    else:
        assert discretization == 'edm'
        sigma_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (
                    sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho

    # Define noise level schedule.
    if schedule == 'vp':
        sigma = vp_sigma(vp_beta_d, vp_beta_min)
        sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min)
        sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min)
    elif schedule == 've':
        sigma = ve_sigma
        sigma_deriv = ve_sigma_deriv
        sigma_inv = ve_sigma_inv
    else:
        assert schedule == 'linear'
        sigma = lambda t: t
        sigma_deriv = lambda t: 1
        sigma_inv = lambda sigma: sigma

    # Define scaling schedule.
    if scaling == 'vp':
        s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt()
        s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3)
    else:
        assert scaling == 'none'
        s = lambda t: 1
        s_deriv = lambda t: 0

    # Compute final time steps based on the corresponding noise levels.
    t_steps = sigma_inv(net.round_sigma(sigma_steps))
    t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])])  # t_N = 0

    # Main sampling loop.
    t_next = t_steps[0]
    x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next))
    for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):  # 0, ..., N-1
        x_cur = x_next

        # Increase noise temporarily.
        gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0
        t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur)))
        x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s(
            t_hat) * S_noise * randn_like(x_cur)

        # Euler step.
        h = t_next - t_hat
        denoised = net(x_hat.float() / s(t_hat), sigma(t_hat), class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
        d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s(
            t_hat) / sigma(t_hat) * denoised
        x_prime = x_hat + alpha * h * d_cur
        t_prime = t_hat + alpha * h

        # Apply 2nd order correction.
        if solver == 'euler' or i == num_steps - 1:
            x_next = x_hat + h * d_cur
        else:
            assert solver == 'heun'
            denoised = net(x_prime.float() / s(t_prime), sigma(t_prime), class_labels, cfg_scale, feat=feat)['x'].to(torch.float64)
            d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv(
                t_prime) * s(t_prime) / sigma(t_prime) * denoised
            x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime)

    return x_next


# ----------------------------------------------------------------------------

def retrieve_n_features(batch_size, feat_path, feat_dim, num_classes, device, split='train', sample_mode='rand_full'):
    env = lmdb.open(os.path.join(feat_path, split), readonly=True, lock=False, create=False)

    # Start a new read transaction
    with env.begin() as txn:
        # Read all images in one single transaction, with one lock
        # We could split this up into multiple transactions if needed
        length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
        if sample_mode == 'rand_full':
            image_ids = random.sample(range(length // 2), batch_size)
            image_ids_y = image_ids
        elif sample_mode == 'rand_repeat':
            image_ids = random.sample(range(length // 2), 1) * batch_size
            image_ids_y = image_ids
        elif sample_mode == 'rand_y':
            image_ids = random.sample(range(length // 2), 1) * batch_size
            image_ids_y = random.sample(range(length // 2), batch_size)
        else:
            raise NotImplementedError
        features, labels = [], []
        for image_id, image_id_y in zip(image_ids, image_ids_y):
            feat_bytes = txn.get(f'feat-{str(image_id)}'.encode('utf-8'))
            y_bytes = txn.get(f'y-{str(image_id_y)}'.encode('utf-8'))
            feat = np.frombuffer(feat_bytes, dtype=np.float32).reshape([feat_dim]).copy()
            y = int(y_bytes.decode('utf-8'))
            features.append(feat)
            labels.append(y)
        features = torch.from_numpy(np.stack(features)).to(device)
        labels = torch.from_numpy(np.array(labels)).to(device)
        class_labels = torch.zeros([batch_size, num_classes], device=device)
        if num_classes > 0:
            class_labels = torch.eye(num_classes, device=device)[labels]
        assert features.shape[0] == class_labels.shape[0] == batch_size
    return features, class_labels



@torch.no_grad()
def generate_with_net(args, net, device, rank, size):
    seeds = args.seeds
    num_batches = ((len(seeds) - 1) // (args.max_batch_size * size) + 1) * size
    all_batches = torch.as_tensor(seeds).tensor_split(num_batches)
    rank_batches = all_batches[rank:: size]

    net.eval()

    # Setup sampler
    sampler_kwargs = dict(num_steps=args.num_steps, S_churn=args.S_churn,
                          solver=args.solver, discretization=args.discretization,
                          schedule=args.schedule, scaling=args.scaling)
    sampler_kwargs = {key: value for key, value in sampler_kwargs.items() if value is not None}
    have_ablation_kwargs = any(x in sampler_kwargs for x in ['solver', 'discretization', 'schedule', 'scaling'])
    sampler_fn = ablation_sampler if have_ablation_kwargs else edm_sampler
    mprint(f"sampler_kwargs: {sampler_kwargs}, \nsampler fn: {sampler_fn.__name__}")
    # Setup autoencoder
    vae = autoencoder.get_model(args.pretrained_path).to(device)

    # generate images
    mprint(f'Generating {len(seeds)} images to "{args.outdir}"...')
    for batch_seeds in tqdm(rank_batches, unit='batch', disable=(rank != 0)):
        dist.barrier()
        batch_size = len(batch_seeds)
        if batch_size == 0:
            continue

        # Pick latents and labels.
        rnd = StackedRandomGenerator(device, batch_seeds)
        latents = rnd.randn([batch_size, net.img_channels, net.img_resolution, net.img_resolution], device=device)
        class_labels = torch.zeros([batch_size, net.num_classes], device=device)
        if net.num_classes:
            class_labels = torch.eye(net.num_classes, device=device)[
                rnd.randint(net.num_classes, size=[batch_size], device=device)]
        if args.class_idx is not None:
            class_labels[:, :] = 0
            class_labels[:, args.class_idx] = 1

        # retrieve features from training set [support random only]
        feat = None
        
        # Generate images.
        def recur_decode(z):
            try:
                return vae.decode(z)
            except:  # reduce the batch for vae decoder but two forward passes when OOM happens occasionally
                assert z.shape[2] % 2 == 0
                z1, z2 = z.tensor_split(2)
                return torch.cat([recur_decode(z1), recur_decode(z2)])

        with torch.no_grad():
            z = sampler_fn(net, latents.float(), class_labels.float(), randn_like=rnd.randn_like,
                           cfg_scale=args.cfg_scale, feat=feat, **sampler_kwargs).float()
            images = recur_decode(z)
            
        # Save images.
        images_np = images.add_(1).mul(127.5).clamp_(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
        # images_np = (images * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
        for seed, image_np in zip(batch_seeds, images_np):
            image_dir = os.path.join(args.outdir, f'{seed - seed % 1000:06d}') if args.subdirs else args.outdir
            os.makedirs(image_dir, exist_ok=True)
            image_path = os.path.join(image_dir, f'{seed:06d}.png')
            if image_np.shape[2] == 1:
                PIL.Image.fromarray(image_np[:, :, 0], 'L').save(image_path)
            else:
                PIL.Image.fromarray(image_np, 'RGB').save(image_path)


def generate(args):
    device = torch.device("cuda")

    mprint(f'cf_scale: {args.cfg_scale}')
    if args.global_rank == 0:
        os.makedirs(args.outdir, exist_ok=True)
        logger = Logger(file_name=f'{args.outdir}/log.txt', file_mode="a+", should_flush=True)

    # Create model:
    net = Precond_models[args.precond](
        img_resolution=args.image_size,
        img_channels=args.image_channels,
        num_classes=args.num_classes,
        model_type=args.model_type,
        use_decoder=args.use_decoder,
        mae_loss_coef=args.mae_loss_coef,
        pad_cls_token=args.pad_cls_token,
        ext_feature_dim=args.ext_feature_dim
    ).to(device)
    mprint(
        f"{args.model_type} (use_decoder: {args.use_decoder}) Model Parameters: {sum(p.numel() for p in net.parameters()):,}")

    # Load checkpoints
    ckpt = torch.load(args.ckpt_path, map_location=device)
    net.load_state_dict(ckpt['ema'])
    mprint(f'Load weights from {args.ckpt_path}')

    generate_with_net(args, net, device)

    # Done.
    cleanup()
    if args.global_rank == 0:
        logger.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser('sampling parameters')

    # ddp
    parser.add_argument('--num_proc_node', type=int, default=1, help='The number of nodes in multi node env.')
    parser.add_argument('--num_process_per_node', type=int, default=1, help='number of gpus')
    parser.add_argument('--node_rank', type=int, default=0, help='The index of node.')
    parser.add_argument('--local_rank', type=int, default=0, help='rank of process in the node')
    parser.add_argument('--master_address', type=str, default='localhost', help='address for master')

    # sampling
    parser.add_argument("--feat_path", type=str, default='')
    parser.add_argument("--ext_feature_dim", type=int, default=0)
    parser.add_argument('--ckpt_path', type=str, required=True, help='Network pickle filename')
    parser.add_argument('--outdir', type=str, required=True, help='sampling results save filename')
    parser.add_argument('--seeds', type=parse_int_list, default='0-63', help='Random seeds (e.g. 1,2,5-10)')
    parser.add_argument('--subdirs', action='store_true', help='Create subdirectory for every 1000 seeds')
    parser.add_argument('--class_idx', type=int, default=None, help='Class label  [default: random]')
    parser.add_argument('--max_batch_size', type=int, default=64, help='Maximum batch size per GPU')

    parser.add_argument("--cfg_scale", type=parse_float_none, default=None, help='None = no guidance, by default = 4.0')

    parser.add_argument('--num_steps', type=int, default=18, help='Number of sampling steps')
    parser.add_argument('--S_churn', type=int, default=0, help='Stochasticity strength')
    parser.add_argument('--solver', type=str, default=None, choices=['euler', 'heun'], help='Ablate ODE solver')
    parser.add_argument('--discretization', type=str, default=None, choices=['vp', 've', 'iddpm', 'edm'],
                        help='Ablate ODE solver')
    parser.add_argument('--schedule', type=str, default=None, choices=['vp', 've', 'linear'],
                        help='Ablate noise schedule sigma(t)')
    parser.add_argument('--scaling', type=str, default=None, choices=['vp', 'none'], help='Ablate signal scaling s(t)')
    parser.add_argument('--pretrained_path', type=str, default='assets/stable_diffusion/autoencoder_kl.pth',
                        help='Autoencoder ckpt')

    # model
    parser.add_argument("--image_size", type=int, default=32)
    parser.add_argument("--image_channels", type=int, default=4)
    parser.add_argument("--num_classes", type=int, default=1000, help='0 means unconditional')
    parser.add_argument("--model_type", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2")
    parser.add_argument('--precond', type=str, choices=['vp', 've', 'edm'], default='edm', help='precond train & loss')
    parser.add_argument("--use_decoder", type=str2bool, default=False)
    parser.add_argument("--pad_cls_token", type=str2bool, default=False)
    parser.add_argument('--mae_loss_coef', type=float, default=0, help='0 means no MAE loss')
    parser.add_argument('--sample_mode', type=str, default='rand_full', help='[rand_full, rand_repeat]')

    args = parser.parse_args()
    args.global_size = args.num_proc_node * args.num_process_per_node
    size = args.num_process_per_node

    if size > 1:
        processes = []
        for rank in range(size):
            args.local_rank = rank
            args.global_rank = rank + args.node_rank * args.num_process_per_node
            p = Process(target=init_processes, args=(generate, args))
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        print('Single GPU run')
        assert args.global_size == 1 and args.local_rank == 0
        args.global_rank = 0
        init_processes(generate, args)