--- base_model: Qwen/Qwen2.5-Coder-14B-Instruct abliterated_from: huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated quantization: nf4 license: apache-2.0 tags: - code - programming - uncensored - 4bit - nf4 - qwen - abliteration - instruct - gs128 - bitsandbytes library: transformers language: - en pipeline_tag: text-generation --- # Qwen2.5-Coder-14B-Instruct-Abliterated-NF4 **A 4-bit (NF4) quantized, abliteration-uncensored version of Qwen2.5-Coder-14B-Instruct** This model is a **pre-quantized 4-bit NormalFloat4 (NF4)** version of the uncensored [huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated), optimized for **low VRAM** and **fast local inference**. Ideal for **local deployment**, **edge devices**, or **low-VRAM environments** while maintaining strong coding and reasoning capabilities. --- ## 🚀 Features - **Base Model**: `Qwen/Qwen2.5-Coder-14B-Instruct` - **Abliteration**: [huihui-ai](https://huggingface.co/huihui-ai) (uncensored) - **Quantization**: **NF4 (4-bit)** – **pre-quantized** - **Efficient**: ~8–9 GB VRAM required for inference - **Safetensors**: Secure, modern format - **Framework**: Compatible with `transformers`, `vLLM`, `Oobabooga`, etc. --- ## 📥 Installation & Usage ### 1. Install Dependencies ```bash pip install transformers torch accelerate --- --- ### Load the Model from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "ikarius/Qwen2.5-Coder-14B-Instruct-Abliterated-NF4" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, # eller torch.float16 trust_remote_code=True ) --- --- # Eksempel prompt = "Write a Python function to calculate Fibonacci numbers using memoization." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) --- --- ### Using with text-generation-webui (Oobabooga) python server.py \ --model ikarius/Qwen2.5-Coder-14B-Instruct-Abliterated-NF4 \ --bf16 \ --trust-remote-code --- 🤝 Credits Original Model: Qwen Team Abliteration: huihui-ai Quantization: ikarius (NF4 via auto-gptq / transformers) Hosting: Hugging Face Hub --- 📄 License Apache 2.0 (same as base model) 🙌 Support ⭐ Star this repo if you find it useful! 🐛 Report issues on the Discussions tab.