nielsr HF Staff commited on
Commit
ccda3a1
·
verified ·
1 Parent(s): 956fd93

Improve model card: add library_name, update paper link, add GitHub and usage info

Browse files

This PR enhances the model card by:
- Adding the `library_name: transformers` to the metadata, enabling the "Use in Transformers" widget.
- Updating the paper link to the official Hugging Face Papers page: https://huggingface.co/papers/2507.14172.
- Adding a direct link to the GitHub repository for quicker access to the code.
- Including detailed installation and usage instructions from the original GitHub README to make the model easier to get started with.

Files changed (1) hide show
  1. README.md +48 -6
README.md CHANGED
@@ -1,9 +1,9 @@
1
  ---
2
- license: apache-2.0
3
- datasets:
4
- - julien31/soar_arc_train_5M
5
  base_model:
6
  - Qwen/Qwen2.5-Coder-14B-Instruct
 
 
 
7
  pipeline_tag: text-generation
8
  tags:
9
  - text-generation
@@ -13,16 +13,18 @@ tags:
13
  - arc
14
  - arc-agi
15
  - soar
 
16
  ---
 
17
  # SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
18
 
19
  <p align="center">
20
- 🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://icml.cc/virtual/2025/poster/43499">Paper</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://julienp.netlify.app/posts/soar/">Blog</a>
21
  </p>
22
 
23
  This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
24
 
25
- > [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://icml.cc/virtual/2025/poster/43499)
26
  >
27
  > Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
28
  > *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
@@ -69,4 +71,44 @@ For a complete, end-to-end example of how to format the prompt, run inference, e
69
  * **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
70
  * **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
71
 
72
- <img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="20%" />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-Coder-14B-Instruct
4
+ datasets:
5
+ - julien31/soar_arc_train_5M
6
+ license: apache-2.0
7
  pipeline_tag: text-generation
8
  tags:
9
  - text-generation
 
13
  - arc
14
  - arc-agi
15
  - soar
16
+ library_name: transformers
17
  ---
18
+
19
  # SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
20
 
21
  <p align="center">
22
+ 🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://huggingface.co/papers/2507.14172">Paper</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://julienp.netlify.app/posts/soar/">Blog</a> &nbsp&nbsp | &nbsp&nbsp 💻 <a href="https://github.com/flowersteam/SOAR">Code</a>
23
  </p>
24
 
25
  This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
26
 
27
+ > [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://huggingface.co/papers/2507.14172)
28
  >
29
  > Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
30
  > *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
 
71
  * **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
72
  * **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
73
 
74
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made%20with%20unsloth.png" width="20%" />
75
+
76
+ ## info install
77
+
78
+ ### conda inference env
79
+ ```
80
+ pip install --upgrade pip
81
+
82
+ git clone https://github.com/flowersteam/SOAR
83
+ cd SOAR
84
+ conda create --name sglang47 \
85
+ python=3.11 \
86
+ -y
87
+ conda activate sglang47
88
+
89
+ pip install "sglang[all]>=0.4.7"
90
+
91
+ pip install -e .
92
+ pip install -r requirements
93
+
94
+ ```
95
+
96
+ ### conda train env
97
+ ```
98
+ conda create --name unsloth_env \
99
+ python=3.11 \
100
+ pytorch-cuda=12.1 \
101
+ pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
102
+ -y
103
+ conda activate unsloth_env
104
+
105
+ pip install unsloth
106
+ cd SOAR
107
+ pip install -e .
108
+ pip install -r requirements.txt
109
+ ```
110
+
111
+ ## Run SOAR
112
+ To run SOAR, please refer to execution instructions located in the experience folder.
113
+
114
+ For simple instructions on running sampling and refinement with SOAR, as well as exploring the dataset, please see the Jupyter notebooks provided in the `notebook` folder. These notebooks walk through the basic SOAR step, including how to generate candidate solutions, perform refinement, and analyze results. This hands-on guide will help you get started quickly and understand each step of the SOAR process.