Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
---
|
| 2 |
base_model: openai/gpt-oss-20b
|
| 3 |
-
datasets:
|
|
|
|
| 4 |
library_name: transformers
|
| 5 |
model_name: gpt-oss-20b-medical-qa
|
| 6 |
tags:
|
|
@@ -8,6 +9,10 @@ tags:
|
|
| 8 |
- trl
|
| 9 |
- sft
|
| 10 |
licence: license
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Model Card for gpt-oss-20b-medical-qa
|
|
@@ -18,19 +23,46 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
| 18 |
## Quick start
|
| 19 |
|
| 20 |
```python
|
| 21 |
-
from transformers import
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 26 |
-
print(output["generated_text"])
|
| 27 |
-
```
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
This model was trained with SFT.
|
| 35 |
|
| 36 |
### Framework versions
|
|
@@ -39,21 +71,4 @@ This model was trained with SFT.
|
|
| 39 |
- Transformers: 4.55.2
|
| 40 |
- Pytorch: 2.8.0.dev20250319+cu128
|
| 41 |
- Datasets: 4.0.0
|
| 42 |
-
- Tokenizers: 0.21.4
|
| 43 |
-
|
| 44 |
-
## Citations
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
Cite TRL as:
|
| 49 |
-
|
| 50 |
-
```bibtex
|
| 51 |
-
@misc{vonwerra2022trl,
|
| 52 |
-
title = {{TRL: Transformer Reinforcement Learning}},
|
| 53 |
-
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
| 54 |
-
year = 2020,
|
| 55 |
-
journal = {GitHub repository},
|
| 56 |
-
publisher = {GitHub},
|
| 57 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 58 |
-
}
|
| 59 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
base_model: openai/gpt-oss-20b
|
| 3 |
+
datasets:
|
| 4 |
+
- FreedomIntelligence/medical-o1-verifiable-problem
|
| 5 |
library_name: transformers
|
| 6 |
model_name: gpt-oss-20b-medical-qa
|
| 7 |
tags:
|
|
|
|
| 9 |
- trl
|
| 10 |
- sft
|
| 11 |
licence: license
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
---
|
| 17 |
|
| 18 |
# Model Card for gpt-oss-20b-medical-qa
|
|
|
|
| 23 |
## Quick start
|
| 24 |
|
| 25 |
```python
|
| 26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 27 |
+
from peft import PeftModel
|
| 28 |
|
| 29 |
+
# Load the tokenizer
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# Load the original model first
|
| 33 |
+
model_kwargs = dict(attn_implementation="eager", torch_dtype="auto", use_cache=True, device_map="auto")
|
| 34 |
+
base_model = AutoModelForCausalLM.from_pretrained("openai/gpt-oss-20b", **model_kwargs).cuda()
|
| 35 |
+
|
| 36 |
+
# Merge fine-tuned weights with the base model
|
| 37 |
+
peft_model_id = "kingabzpro/gpt-oss-20b-medical-qa"
|
| 38 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 39 |
+
model = model.merge_and_unload()
|
| 40 |
|
| 41 |
+
question = dataset[0]["Open-ended Verifiable Question"]
|
| 42 |
+
|
| 43 |
+
text = render_infernce_harmony(question)
|
| 44 |
+
|
| 45 |
+
inputs = tokenizer(
|
| 46 |
+
[text + tokenizer.eos_token], return_tensors="pt"
|
| 47 |
+
).to("cuda")
|
| 48 |
+
outputs = model.generate(
|
| 49 |
+
input_ids=inputs.input_ids,
|
| 50 |
+
attention_mask=inputs.attention_mask,
|
| 51 |
+
max_new_tokens=20,
|
| 52 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 53 |
+
use_cache=True,
|
| 54 |
+
)
|
| 55 |
+
response = tokenizer.batch_decode(outputs)
|
| 56 |
+
print(response[0])
|
| 57 |
+
```
|
| 58 |
+
Output:
|
| 59 |
|
| 60 |
+
```bash
|
| 61 |
+
<|start|>developer<|message|># Instructions
|
| 62 |
|
| 63 |
+
You are a medical expert with advanced knowledge in clinical reasoning and diagnostics. Respond with ONLY the final diagnosis/cause in ≤5 words.<|end|><|start|>user<|message|>An 88-year-old woman with osteoarthritis is experiencing mild epigastric discomfort and has vomited material resembling coffee grounds multiple times. Considering her use of naproxen, what is the most likely cause of her gastrointestinal blood loss?<|end|><|start|>assistant<|return|><|message|>Stomach ulcer<|end|><|return|>
|
| 64 |
+
```
|
| 65 |
+
## Training procedure
|
| 66 |
This model was trained with SFT.
|
| 67 |
|
| 68 |
### Framework versions
|
|
|
|
| 71 |
- Transformers: 4.55.2
|
| 72 |
- Pytorch: 2.8.0.dev20250319+cu128
|
| 73 |
- Datasets: 4.0.0
|
| 74 |
+
- Tokenizers: 0.21.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|