File size: 28,140 Bytes
1b0aca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
"""# ββββββββββββ
# `gla.py`
Based on: https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/modeling_deepseek.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
import math
from .shared_space_config import SharedSpaceDecoderConfig
def create_norm_layer(hidden_size: int, config: SharedSpaceDecoderConfig) -> nn.Module:
"""
Create a normalization layer based on the config norm_type.
If `hidden_size` is `None`, this returns an identity layer.
Args:
hidden_size: The dimension to normalize over
config: Configuration containing norm_type and epsilon values
Returns:
Either a LayerNorm or RMSNorm layer
"""
if hidden_size is None:
return nn.Identity()
elif config.norm_type == "layernorm":
return nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
elif config.norm_type == "rmsnorm":
return DeepseekV3RMSNorm(hidden_size, eps=config.rms_norm_eps)
else:
# This should be caught by config validation, but being defensive
raise ValueError(f"Unknown norm_type: {config.norm_type}")
# TODO - Find a shared place to put this.
class DeepseekV3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DeepseekV3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Helper function needed because it's called twice during RoPE,
# but I dumped it in the comments there.
# TODO - Nah, screw it, just write it twice! At least then you get
# to use the word 'query' instead of 'x'.
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class RotaryEmbedding(nn.Module):
"""Precompute RoPE embeddings and store them as buffers."""
def __init__(self, config: SharedSpaceDecoderConfig) -> None:
super().__init__()
dim = config.rope_dims
seq_len = config.max_position_embeddings
# ------------------------------
# Compute inverse frequencies
# ------------------------------
# Shape: [dim // 2]
# inv_freq[i] = 1 / (theta^(i / dim))
inv_freq = 1.0 / (
config.rope_theta
** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)
)
# ------------------------------
# Apply RoPE scaling if configured
# ------------------------------
if config.rope_scaling is not None:
scaling_type = config.rope_scaling.get("type", "linear")
scaling_factor = config.rope_scaling.get("factor", 1.0)
if scaling_type == "linear":
# Linear scaling: divide frequencies by scaling factor
inv_freq = inv_freq / scaling_factor
elif scaling_type == "dynamic":
# Dynamic scaling: adjust based on sequence length
# This is a simplified implementation
inv_freq = inv_freq / scaling_factor
else:
print(f"Warning: Unknown RoPE scaling type '{scaling_type}', using linear scaling")
inv_freq = inv_freq / scaling_factor
# ------------------------------
# Compute position indices
# ------------------------------
# Shape: [seq_len]
t = torch.arange(seq_len, dtype=torch.float32)
# ------------------------------
# Outer product: [seq_len, dim // 2]
# Each row i contains: t[i] * inv_freq
# ------------------------------
freqs = torch.outer(t, inv_freq)
# ------------------------------
# Duplicate for interleaved sin/cos: [seq_len, dim]
# This matches the common format: [sin_0, cos_0, sin_1, cos_1, ...]
# ------------------------------
emb = torch.cat((freqs, freqs), dim=-1)
# ------------------------------
# Register cos/sin as buffers
# - Stored in float32
# - Will be moved to correct device/dtype via model.to(...)
# - Not saved with state_dict (persistent=False)
# ------------------------------
self.register_buffer("cos", emb.cos(), persistent=False)
self.register_buffer("sin", emb.sin(), persistent=False)
def forward(self, position_ids: torch.LongTensor) -> tuple[torch.Tensor, torch.Tensor]:
""" """
return None # This function is not necessary.
"""## GLA"""
class GroupedLatentAttention(nn.Module):
"""
This version of Multihead Latent Attention applies the re-ordering trick from DeepSeekV3.
Instead of comparing the queries and keys in the query-key space, we compare them in the
kv-shared space.
For clarity, I've re-interpreted the naming of the heads, and am framing it as MQA.
What were previously labeled the query and key heads are now treated as a low-rank decomposition
of the query heads.
What we considered the "shared key/value space" is now a single key head that is also used as the
value head.
Finally, what we previously labeled the value and output heads are now treated as a low-rank
decomposition of the output heads.
This interpretation / implementation is designed to leverage the performance benefits of GQA.
The trade-off is that the query-key matching space is now larger--it will require a greater
number of calculations to match the queries to the keys. The hope is that the memory bandwidth
savings will outweigh the increased computational cost.
The same applies to the value-output space.
Note that, although the query-key and value-output spaces are now large, the low-rank
decomposition of the query heads and output heads ensures that the heads are still effectively
low rank / not over-parameterized.
Finally, note that this implementation also supports the optional use of shared spaces on
the query and output sides.
I've named the class "GroupedLatentAttention" because I may expand it to support multiple
key/value heads (i.e., multiple groups of query heads) in the future.
==== Adding RoPE to VO ====
### **Attempt**
We're extending Rotary Position Embeddings (RoPE) beyond the query-key interaction to the **value-output path** in Multihead Latent Attention (MLA).
* In DeepSeek-V3's MLA framing, the same **full-rank key/value head** provides both the keys (for patterns) and the values (for messages).
* Queries and output heads are low-rank bottlenecks, effectively serving as vocabularies of **pattern directions** (Q) and **message directions** (O).
* Standard RoPE only modulates the QβK dot product. Our attempt is to also apply RoPE phases consistently in the VβO pathway, so that **positional dependence is preserved in both the matching (QK) and messaging (VO) sides**.
--
### **Hypothesis**
If we rotate value vectors by their **source position phase** and then apply the **inverse rotation at the destination** before output projection, the model gains a clean **relative-position equivariance** in the message path, mirroring the property RoPE provides for queries and keys.
This should:
1. Make the 1-to-1 correspondence between "pattern templates" (Q) and "message templates" (O) more consistent.
2. Reduce the burden on output heads to learn ad-hoc positional compensation.
3. Improve long-context generalization, since both attention matching *and* message passing would share the same relative-position geometry.
"""
def __init__(self, config: SharedSpaceDecoderConfig, layer_idx: int):
super().__init__()
self.config = config
# Used to determine if this layer is dense or uses latents.
self.layer_idx = layer_idx
self.attention_dropout_prob = config.attention_dropout_prob
self.num_heads = config.num_attention_heads
self.rope_theta = config.rope_theta
self.rope_dims = config.rope_dims
self.nope_dims = config.nope_dims
self.q_shared_dim = config.q_shared_dim
# What was previously considered the key/value shared dimension is now the
# size of the MQA style single key/value head.
self.kv_head_dim = config.kv_shared_dim
self.o_shared_dim = config.o_shared_dim
# What was previously the query/key head size is now the size of
# the query head decomposition.
self.q_inner_dim = config.qk_private_dim
# What was previously the value/output head size is now the size of
# the output head decomposition.
self.o_inner_dim = config.vo_private_dim
self.hidden_size = config.hidden_size
# =========================
# Input Projections
# =========================
# If this is one of the dense layers,
if self.layer_idx < config.num_dense_layers:
# =========================
# Dense Attention
# =========================
# No latent projections.
self.latent_spaces = False
# Define the standard QKV projection
self.qkv_proj = nn.Linear(
config.hidden_size,
self.num_heads * (self.qk_private_dim * 2 + self.vo_private_dim),
bias=config.attention_bias,
)
# Dense output projection
self.o_proj = nn.Linear(
self.num_heads * self.vo_private_dim,
config.hidden_size,
bias=config.attention_bias,
)
# If we're past the dense layers,
else:
# =========================
# Latent Attention
# =========================
# Use latent projections.
self.latent_spaces = True
# Input latent projections
print("config.q_shared_dim", config.q_shared_dim)
# ==========================
# Shared Query Space
# ==========================
# If we're using a shared query subspace,
if config.q_shared_dim is not None:
# Set a flag that we'll check in `forward`.
self.query_shared = True
self.q_shared_proj = nn.Linear(
config.hidden_size,
self.q_shared_dim,
bias=config.attention_bias,
)
self.q_shared_norm = create_norm_layer(self.q_shared_dim, config)
else:
print("Using identity for shared projection.")
# Set a flag that we'll check in `forward`.
self.query_shared = False
self.q_shared_dim = config.hidden_size
#print("Updated self.q_shared_dim to", self.q_shared_dim)
# Use identity.
self.q_shared_proj = nn.Identity()
self.q_shared_norm = nn.Identity()
# ==========================
# Shared Output Space
# ==========================
# If we're using a shared output space,
if config.o_shared_dim is not None:
# Set a flag that we'll check in `forward`.
self.output_shared = True
# Shared output projection
# The head outputs from `o_private_proj` are first summed together (across
# heads) in the latent space.
# Then we project their combined outputs (a single vector per token)
# back to model space via `o_shared_proj`.
self.o_shared_proj = nn.Linear(
self.o_shared_dim,
self.hidden_size,
bias=config.attention_bias
)
self.o_shared_norm = create_norm_layer(self.o_shared_dim, config)
else:
# Set a flag that we'll check in `forward`.
self.output_shared = False
self.o_shared_dim = config.hidden_size
# Use identity.
self.o_shared_proj = nn.Identity()
self.o_shared_norm = nn.Identity()
# ================================
# Decomposed Query Heads
# ================================
# Query down projections.
# The query head inner dimension makes the head low rank, as usual.
self.q_priv_a_proj = nn.Linear(
self.q_shared_dim,
self.num_heads * self.q_inner_dim,
bias=False
)
# Query up projections.
# We project back to the larger key/value space.
# Rather than create a linear and break it apart, we can create our
# desired shapes.
# per-head Dq_c -> Dkv (store as [H, Dq_c, Dkv])
self.q_priv_b_weight = nn.Parameter(
torch.empty(self.num_heads, self.q_inner_dim, self.kv_head_dim)
)
nn.init.kaiming_uniform_(self.q_priv_b_weight, a=math.sqrt(5))
# ====================================
# Single Joint Key/Value Head
# ====================================
# The single joint key/value head.
self.kv_priv_proj = nn.Linear(
self.hidden_size,
self.kv_head_dim,
bias=False,
)
self.kv_priv_norm = create_norm_layer(self.kv_head_dim, config)
# ================================
# Decomposed Output Heads
# ================================
# Down: values [B,H,T,Dkv] -> per-head Do_c using weights [H, Dkv, Do_c]
self.o_priv_a_weight = nn.Parameter(
torch.empty(self.num_heads, self.kv_head_dim, self.o_inner_dim)
)
nn.init.kaiming_uniform_(self.o_priv_a_weight, a=math.sqrt(5))
# Output up projections.
# We project back to the larger output subspace (or the model space,
# if no subspace is used).
self.o_priv_b_proj = nn.Linear(
self.num_heads * self.o_inner_dim,
self.o_shared_dim,
bias=False
)
# Let SDPA choose 1/sqrt(E). If you want explicit: self.kv_head_dim ** -0.5
self.softmax_scale = None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
#past_key_value: Optional[Cache] = None, # TODO - Can I remove this?
#cache_position: Optional[torch.LongTensor] = None, # TODO - Can I remove this?
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
# === Tensor Dimension Symbols ===
# B: batch_size β number of samples in the batch
# T: seq_len β number of tokens per sample
# H: n_heads β number of attention heads
# D: hidden_dim β model embedding size
# Dq_c: q_inner_dim - per-head decomposition dim for Q
Dq_c = self.q_inner_dim # per-head inner dim for Q
# Do_c: o_inner_dim - per-head decomposition dim for O
Do_c = self.o_inner_dim # per-head inner dim for O
# Dkv: kv_head_dim - Head size of the joint key/value head
Dkv = self.kv_head_dim # Head size of the joint key/value head
# Dr: rope_dims - The first Dr dimensions receive rope.
# Dq_s: q_shared_dim - query shared subspace size
Dq_s = self.q_shared_dim
# Do_s: o_shared_dim - output shared subspace size
Do_s = self.o_shared_dim
# Input token embeddings
# hidden_states: [B, T, D]
B, T = hidden_states.shape[:2]
H = self.num_heads
# =============================
# Shared Query Space
# =============================
# These are set to identity if no shared query space is used.
# Project token embeddings into shared latents
# Input:
# hidden_states [B, T, D]
# q_shared_proj [D, Dq_s]
# kv_shared_proj [D, Dkv]
# Output:
# q_shared [B, T, Dq_s]
# kv_shared [B, T, Dkv]
q_shared = self.q_shared_proj(hidden_states)
# Normalize latent vectors, shapes unchanged.
q_shared = self.q_shared_norm(q_shared)
# ================================
# Decomposed Query Heads
# ================================
# Project query latents onto decomposed query heads.
#
# Down projection ('a')
# Input:
# q_shared [B, T, Dq_s]
# q_priv_a_proj [Dq_s, H*Dq_c]
# Output:
# queries_c [B, T, H*Dq_c]
queries_c = self.q_priv_a_proj(q_shared)
# Split the vectors by head
# Input:
# queries_c [B, T, H*Dq_c]
# Output:
# queries_c [B, T, H, Dq_c]
queries_c = queries_c.view(B, T, H, Dq_c)
# Up projection ('b')
# Input:
# queries_c [B, T, H, Dq_c]
# q_priv_b_weight [H, Dq_c, Dkv]
# Output:
# queries [B, H, T, Dkv]
queries = torch.einsum("bthd,hdc->bhtc", queries_c, self.q_priv_b_weight)
# ===================================
# Single Joint Key/Value Head
# ===================================
# Project token embeddings into single joint key/value head.
# Input:
# hidden_states [B, T, D]
# kv_priv_proj [D, Dkv]
# Output:
# keyvalue [B, T, Dkv]
keyvalue = self.kv_priv_proj(hidden_states)
# Apply QK normalization.
keyvalue = self.kv_priv_norm(keyvalue)
# Prepare the queries and keyvalue vectors for RoPE and flash attention.
# We have multiple query heads, and the queries are in `queries`.
# We have a single key head, and the keyvector is in `keyvalue`.
# Move the head dimension to the front, so for each head, we have
# a series of vectors for each token in the sequence.
#
# Inputs:
# keyvalue [B, T, Dkv]
# Output:
# keyvalue [B, 1, T, Dkv]
keyvalue = keyvalue.unsqueeze(1)
# ==================
# RoPE
# ==================
# Apply rotary position embeddings to the first `self.rope_dims` of
# each head.
# The slice operations are free, but the concatenation is
# not, because the outputs of the rotation operation are new data
# occupying different memory. Still considered the best option,
# though.
# 1. Unpack the precomputed cosine and sine embeddings
# Position embeddings is a tuple of
# (cos [seq_len, rope_dims],
# sin [seq_len, rope_dims])
cos, sin = position_embeddings
# 2. Split the query and key heads into the part to rotate and the part
# to pass through (early columns get position info, later ones don't)
#
# (Using queries as example)
# Inputs:
# queries [B, H, T, Dkv] Dkv = rope_dims + not_rope_dims
# Outputs:
# q_rope [B, H, T, Dr]
# q_pass [B, H, T, Dkv-Dr]
q_rope, q_pass = queries[..., :self.rope_dims], queries[..., self.rope_dims:]
k_rope, k_pass = keyvalue[..., :self.rope_dims], keyvalue[..., self.rope_dims:]
# 3. Apply the rotary embedding to the designated slice
#
# To broadcast cos and sin across the batch and head dimensions, we unsqueeze them.
# Shape change: [T, Dr] -> [1, 1, T, Dr]
cos = cos.unsqueeze(0).unsqueeze(0)
sin = sin.unsqueeze(0).unsqueeze(0)
#print("q_rope.shape[-1] // 2:", (q_rope.shape[-1] // 2))
#print("x1 = x[..., :x.shape[-1] // 2 ].shape:", q_rope[..., :q_rope.shape[-1] // 2 ].shape)
#print("sin/cos.shape:", cos.shape)
#print("q_rope.shape:", q_rope.shape)
#print("(q_rope * cos).shape:", (q_rope * cos).shape)
#print("rotate_half(q_rope).shape:", rotate_half(q_rope).shape)
#print("(rotate_half(q_rope) * sin).shape:", (rotate_half(q_rope) * sin).shape)
"""
In this example batch_size = 2, hum_heads = 8, seq_len = 65, rope_dims = 16
q_rope.shape[-1] // 2: 8
x1 = x[..., :x.shape[-1] // 2 ].shape: torch.Size([2, 8, 65, 8])
sin/cos.shape: torch.Size([1, 1, 65, 16]) # After double unsqueeze.
vq_rope.shape: torch.Size([2, 8, 65, 16])
(q_rope * cos).shape: torch.Size([2, 8, 65, 16])
rotate_half(q_rope).shape: torch.Size([2, 8, 65, 16])
(rotate_half(q_rope) * sin).shape: torch.Size([2, 8, 65, 16])
"""
# Let's walk through the queries as the example.
# What does rotate half do?
# dim -1 is the row vectors, the queries
#
# Step 1: Split the vector in half.
# "q_rope.shape[-1] // 2" <- How much to select. Half the length of the q_rope vector
# x1 = x[..., :x.shape[-1] // 2 ] # Select the first half of the vector.
# x2 = x[..., x.shape[-1] // 2:] # Select the second half.
#
# Step 2:
# - Apply negative to the values in the second half.
# - Reverse the order of the halves.
# return torch.cat((-x2, x1), dim=-1)
#
# ---- (q_rope * cos) ----
# Element-wise multiply the values in each `cos` vector with the
# corresponding (i.e., same sequence position) `q_rope` vector.
#
# Inputs:
# q_rope [B, H, T, Dr]
# cos [1, 1, T, Dr]
#
# Outputs:
# x [B, H, T, Dr]
#
# ---- (rotate_half(q_rope)) ----
# TODO
#
# Inputs:
# q_rope [B, T, Dr]
#
# Outputs:
# rot_q_rope [B, T, Dr]
#
# ---- rotated * sin ----
# TODO
q_rotated = (q_rope * cos) + (rotate_half(q_rope) * sin)
k_rotated = (k_rope * cos) + (rotate_half(k_rope) * sin)
# 4. Concatenate the rotated and pass-through parts back together
# Input (each): [B, H, T, Dr] and [B, H, T, Dkv-Dr]
# Output (each): [B, H, T, Dkv]
# (Where h = 1 for the key head and h = num_heads for the query heads)
queries = torch.cat((q_rotated, q_pass), dim=-1)
keyvalue = torch.cat((k_rotated, k_pass), dim=-1)
# ====================
# GQA / MQA
# ====================
# GPT says that flash attention will infer the broadcasting, so `expand` is not needed.
#
# We need to use the `expand` operation to broadcast the keyvalue vector
# across the query heads.
# Input:
# keyvalue [B, 1, T, Dkv]
# Output:
# keyvalue [B, H, T, Dkv]
#keyvalue = keyvalue.expand(-1, H, -1, -1)
# ===================
# Attention
# ===================
# We're ready for the attention score calculation.
# Only apply dropout during training.
# self.training is a pytorch flag.
if self.training:
dropout_p = self.attention_dropout_prob
else:
dropout_p = 0.0
# Call SDPA / Flash Attention
# https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
# Apply MQA / GQA. In this case, we have a single key head, and multiple query heads.
values = F.scaled_dot_product_attention(
queries,
keyvalue, # Single key vector (joint with value) for GQA / MQA.
keyvalue, # Single value vector (joint with key) for GQA / MQA.
attn_mask=None, # attention_mask,
dropout_p=dropout_p,
scale=self.softmax_scale,
is_causal=True, # This is a decoder - apply causal masking
)
# Attention outputs:
# values [B, H, T, Dkv]
# The final Dr dims of the value vectors carry RoPE information.
# We can either (1) add position dependence to the value-output process,
# or (2) we can strip off the RoPE information and only use the non-RoPE parts.
# Let's try option 1!
# Split the values into the RoPE and non-RoPE parts.
# Input:
# values [B, H, T, Dkv]
# Output:
# values_rope [B, H, T, Dr]
# values_pass [B, H, T, Dkv-Dr]
values_rope, values_pass = values[..., :self.rope_dims], values[..., self.rope_dims:]
# Fold the query RoPE information into the value vectors.
# Inverse rotation: R_{-ΞΈ} x = (x * cos) - (rotate_half(x) * sin)
# Input:
# values_rope [B, H, T, Dr]
# cos [1, 1, T, Dr]
# sin [1, 1, T, Dr]
# Output:
# values_unrot [B, H, T, Dr]
values_unrot = (values_rope * cos) - (rotate_half(values_rope) * sin)
# Now the values have the offset information in their rope dimensions,
# and the output heads can learn to use it.
values = torch.cat((values_unrot, values_pass), dim=-1) # [B,H,T,Dkv]
# =========================
# Output Projection
# =========================
# Project the values onto the decomposed output heads.
# Output down projection heads.
# Input:
# values [B, H, T, Dkv]
# o_priv_a_weight [H, Dkv, Do_c]
# Output:
# outputs_c [B, H, T, Do_c]
outputs_c = torch.einsum("bhtd,hdc->bhtc", values, self.o_priv_a_weight)
# For the up projection, we can concatenate the 'outputs_c' vectors by head,
# (in the same way we would usually concatenate the value vectors)
# Input:
# outputs_c [B, H, T, Do_c]
# Output:
# outputs_c [B, T, H*Do_c]
outputs_c = outputs_c.permute(0, 2, 1, 3).contiguous().view(B, T, H * Do_c)
# Project up to the shared output space and sum across the output heads.
# Input:
# outputs_c [B, T, H*Do_c]
# o_priv_b_proj [H*Do_c, Do_s]
# Output:
# output_s [B, T, Do_s]
output_s = self.o_priv_b_proj(outputs_c)
# Apply normalization to the output latents
output_s = self.o_shared_norm(output_s)
# Re-project the output latent representation back to model space.
# Input:
# output_s [B, T, Do_s]
# o_shared_proj [Do_s, D]
# Output:
# attn_output [B, T, D]
attn_output = self.o_shared_proj(output_s)
# TODO - Not currently supported.
# If this is a dense layer,
# Project the values back into model space.
# attn_output = self.o_proj(attn_output)
# -----------------------------------------
return attn_output
|