File size: 28,140 Bytes
1b0aca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""# β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚

# `gla.py`

Based on: https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/modeling_deepseek.py

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
import math

from .shared_space_config import SharedSpaceDecoderConfig


def create_norm_layer(hidden_size: int, config: SharedSpaceDecoderConfig) -> nn.Module:
    """
    Create a normalization layer based on the config norm_type.

    If `hidden_size` is `None`, this returns an identity layer.

    Args:
        hidden_size: The dimension to normalize over
        config: Configuration containing norm_type and epsilon values

    Returns:
        Either a LayerNorm or RMSNorm layer
    """
    if hidden_size is None:
        return nn.Identity()
    elif config.norm_type == "layernorm":
        return nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
    elif config.norm_type == "rmsnorm":
        return DeepseekV3RMSNorm(hidden_size, eps=config.rms_norm_eps)
    else:
        # This should be caught by config validation, but being defensive
        raise ValueError(f"Unknown norm_type: {config.norm_type}")


# TODO - Find a shared place to put this.
class DeepseekV3RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        DeepseekV3RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


# Helper function needed because it's called twice during RoPE,
# but I dumped it in the comments there.
# TODO - Nah, screw it, just write it twice! At least then you get
# to use the word 'query' instead of 'x'.
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

class RotaryEmbedding(nn.Module):
    """Precompute RoPE embeddings and store them as buffers."""

    def __init__(self, config: SharedSpaceDecoderConfig) -> None:
        super().__init__()

        dim = config.rope_dims
        seq_len = config.max_position_embeddings

        # ------------------------------
        # Compute inverse frequencies
        # ------------------------------
        # Shape: [dim // 2]
        #   inv_freq[i] = 1 / (theta^(i / dim))
        inv_freq = 1.0 / (
            config.rope_theta
            ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)
        )

        # ------------------------------
        # Apply RoPE scaling if configured
        # ------------------------------
        if config.rope_scaling is not None:
            scaling_type = config.rope_scaling.get("type", "linear")
            scaling_factor = config.rope_scaling.get("factor", 1.0)

            if scaling_type == "linear":
                # Linear scaling: divide frequencies by scaling factor
                inv_freq = inv_freq / scaling_factor
            elif scaling_type == "dynamic":
                # Dynamic scaling: adjust based on sequence length
                # This is a simplified implementation
                inv_freq = inv_freq / scaling_factor
            else:
                print(f"Warning: Unknown RoPE scaling type '{scaling_type}', using linear scaling")
                inv_freq = inv_freq / scaling_factor

        # ------------------------------
        # Compute position indices
        # ------------------------------
        # Shape: [seq_len]
        t = torch.arange(seq_len, dtype=torch.float32)

        # ------------------------------
        # Outer product: [seq_len, dim // 2]
        # Each row i contains: t[i] * inv_freq
        # ------------------------------
        freqs = torch.outer(t, inv_freq)

        # ------------------------------
        # Duplicate for interleaved sin/cos: [seq_len, dim]
        # This matches the common format: [sin_0, cos_0, sin_1, cos_1, ...]
        # ------------------------------
        emb = torch.cat((freqs, freqs), dim=-1)

        # ------------------------------
        # Register cos/sin as buffers
        # - Stored in float32
        # - Will be moved to correct device/dtype via model.to(...)
        # - Not saved with state_dict (persistent=False)
        # ------------------------------
        self.register_buffer("cos", emb.cos(), persistent=False)
        self.register_buffer("sin", emb.sin(), persistent=False)

    def forward(self, position_ids: torch.LongTensor) -> tuple[torch.Tensor, torch.Tensor]:
        """ """
        return None # This function is not necessary.

"""## GLA"""

class GroupedLatentAttention(nn.Module):
    """
    This version of Multihead Latent Attention applies the re-ordering trick from DeepSeekV3.
    Instead of comparing the queries and keys in the query-key space, we compare them in the 
    kv-shared space. 
    
    For clarity, I've re-interpreted the naming of the heads, and am framing it as MQA.
    What were previously labeled the query and key heads are now treated as a low-rank decomposition
    of the query heads. 
    What we considered the "shared key/value space" is now a single key head that is also used as the
    value head.
    Finally, what we previously labeled the value and output heads are now treated as a low-rank 
    decomposition of the output heads.

    This interpretation / implementation is designed to leverage the performance benefits of GQA.
    The trade-off is that the query-key matching space is now larger--it will require a greater
    number of calculations to match the queries to the keys. The hope is that the memory bandwidth
    savings will outweigh the increased computational cost.

    The same applies to the value-output space.

    Note that, although the query-key and value-output spaces are now large, the low-rank 
    decomposition of the query heads and output heads ensures that the heads are still effectively
    low rank / not over-parameterized.

    Finally, note that this implementation also supports the optional use of shared spaces on 
    the query and output sides.
    
    I've named the class "GroupedLatentAttention" because I may expand it to support multiple
    key/value heads (i.e., multiple groups of query heads) in the future.

    ==== Adding RoPE to VO ====

    ### **Attempt**

    We're extending Rotary Position Embeddings (RoPE) beyond the query-key interaction to the **value-output path** in Multihead Latent Attention (MLA).

    * In DeepSeek-V3's MLA framing, the same **full-rank key/value head** provides both the keys (for patterns) and the values (for messages).
    * Queries and output heads are low-rank bottlenecks, effectively serving as vocabularies of **pattern directions** (Q) and **message directions** (O).
    * Standard RoPE only modulates the Q–K dot product. Our attempt is to also apply RoPE phases consistently in the V–O pathway, so that **positional dependence is preserved in both the matching (QK) and messaging (VO) sides**.

    --

    ### **Hypothesis**

    If we rotate value vectors by their **source position phase** and then apply the **inverse rotation at the destination** before output projection, the model gains a clean **relative-position equivariance** in the message path, mirroring the property RoPE provides for queries and keys.

    This should:

    1. Make the 1-to-1 correspondence between "pattern templates" (Q) and "message templates" (O) more consistent.
    2. Reduce the burden on output heads to learn ad-hoc positional compensation.
    3. Improve long-context generalization, since both attention matching *and* message passing would share the same relative-position geometry.


    """

    def __init__(self, config: SharedSpaceDecoderConfig, layer_idx: int):
        super().__init__()

        self.config = config

        # Used to determine if this layer is dense or uses latents.
        self.layer_idx = layer_idx
        self.attention_dropout_prob = config.attention_dropout_prob

        self.num_heads = config.num_attention_heads

        self.rope_theta = config.rope_theta
        self.rope_dims = config.rope_dims
        self.nope_dims = config.nope_dims

        self.q_shared_dim = config.q_shared_dim
        # What was previously considered the key/value shared dimension is now the 
        # size of the MQA style single key/value head.
        self.kv_head_dim = config.kv_shared_dim
        self.o_shared_dim = config.o_shared_dim

        # What was previously the query/key head size is now the size of 
        # the query head decomposition.
        self.q_inner_dim = config.qk_private_dim
        
        # What was previously the value/output head size is now the size of 
        # the output head decomposition.
        self.o_inner_dim = config.vo_private_dim

        self.hidden_size = config.hidden_size

        # =========================
        #     Input Projections
        # =========================

        # If this is one of the dense layers,
        if self.layer_idx < config.num_dense_layers:

            # =========================
            #     Dense Attention
            # =========================

            # No latent projections.
            self.latent_spaces = False

            # Define the standard QKV projection
            self.qkv_proj = nn.Linear(
                config.hidden_size,
                self.num_heads * (self.qk_private_dim * 2 + self.vo_private_dim),
                bias=config.attention_bias,
            )

            # Dense output projection
            self.o_proj = nn.Linear(
                self.num_heads * self.vo_private_dim,
                config.hidden_size,
                bias=config.attention_bias,
            )

        # If we're past the dense layers,
        else:

            # =========================
            #     Latent Attention
            # =========================

            # Use latent projections.
            self.latent_spaces = True

            # Input latent projections

            print("config.q_shared_dim", config.q_shared_dim)
            
            # ==========================
            #     Shared Query Space
            # ==========================

            # If we're using a shared query subspace,
            if config.q_shared_dim is not None:
                # Set a flag that we'll check in `forward`.
                self.query_shared = True

                self.q_shared_proj = nn.Linear(
                    config.hidden_size,
                    self.q_shared_dim,
                    bias=config.attention_bias,
                )
                
                self.q_shared_norm = create_norm_layer(self.q_shared_dim, config)               
                
            else:
                print("Using identity for shared projection.")
                # Set a flag that we'll check in `forward`.
                self.query_shared = False

                self.q_shared_dim = config.hidden_size

                #print("Updated self.q_shared_dim to", self.q_shared_dim) 
                
                # Use identity.
                self.q_shared_proj = nn.Identity()
                self.q_shared_norm = nn.Identity()

            # ==========================
            #     Shared Output Space
            # ==========================

            # If we're using a shared output space,
            if config.o_shared_dim is not None:
                # Set a flag that we'll check in `forward`.
                self.output_shared = True

                # Shared output projection
                # The head outputs from `o_private_proj` are first summed together (across
                # heads) in the latent space.
                # Then we project their combined outputs (a single vector per token)
                # back to model space via `o_shared_proj`.
                self.o_shared_proj = nn.Linear(
                    self.o_shared_dim,
                    self.hidden_size,
                    bias=config.attention_bias
                )

                self.o_shared_norm = create_norm_layer(self.o_shared_dim, config)

            else:
                # Set a flag that we'll check in `forward`.
                self.output_shared = False
                self.o_shared_dim = config.hidden_size
                
                # Use identity.
                self.o_shared_proj = nn.Identity()
                self.o_shared_norm = nn.Identity()

            # ================================
            #      Decomposed Query Heads
            # ================================

            # Query down projections.
            # The query head inner dimension makes the head low rank, as usual.
            self.q_priv_a_proj = nn.Linear(
                self.q_shared_dim,
                self.num_heads * self.q_inner_dim,
                bias=False
            )

            # Query up projections.
            # We project back to the larger key/value space.
            # Rather than create a linear and break it apart, we can create our 
            # desired shapes.
            #  per-head Dq_c -> Dkv     (store as [H, Dq_c, Dkv])
            self.q_priv_b_weight = nn.Parameter(
                torch.empty(self.num_heads, self.q_inner_dim, self.kv_head_dim)
            )
            nn.init.kaiming_uniform_(self.q_priv_b_weight, a=math.sqrt(5))

            # ====================================
            #      Single Joint Key/Value Head
            # ====================================

            # The single joint key/value head.
            self.kv_priv_proj = nn.Linear(
                self.hidden_size,
                self.kv_head_dim,
                bias=False,
            )

            self.kv_priv_norm = create_norm_layer(self.kv_head_dim, config)

            # ================================
            #      Decomposed Output Heads
            # ================================

            # Down: values [B,H,T,Dkv] -> per-head Do_c using weights [H, Dkv, Do_c]
            self.o_priv_a_weight = nn.Parameter(
                torch.empty(self.num_heads, self.kv_head_dim, self.o_inner_dim)
            )
            nn.init.kaiming_uniform_(self.o_priv_a_weight, a=math.sqrt(5))

            # Output up projections.
            
            # We project back to the larger output subspace (or the model space, 
            # if no subspace is used).
            self.o_priv_b_proj = nn.Linear(
                self.num_heads * self.o_inner_dim,
                self.o_shared_dim,
                bias=False
            )

        # Let SDPA choose 1/sqrt(E). If you want explicit: self.kv_head_dim ** -0.5
        self.softmax_scale = None


    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        #past_key_value: Optional[Cache] = None, # TODO - Can I remove this?
        #cache_position: Optional[torch.LongTensor] = None, # TODO - Can I remove this?
        **kwargs,
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        # === Tensor Dimension Symbols ===
        #     B: batch_size     β€” number of samples in the batch
        #     T: seq_len        β€” number of tokens per sample
        #     H: n_heads        β€” number of attention heads
        #     D: hidden_dim     β€” model embedding size
        #  Dq_c: q_inner_dim    - per-head decomposition dim for Q
        Dq_c = self.q_inner_dim        # per-head inner dim for Q
        #  Do_c: o_inner_dim    - per-head decomposition dim for O
        Do_c = self.o_inner_dim        # per-head inner dim for O
        #   Dkv: kv_head_dim    - Head size of the joint key/value head
        Dkv  = self.kv_head_dim        # Head size of the joint key/value head
        #    Dr: rope_dims      - The first Dr dimensions receive rope.
        #  Dq_s: q_shared_dim   - query shared subspace size
        Dq_s = self.q_shared_dim 
        #  Do_s: o_shared_dim   - output shared subspace size
        Do_s = self.o_shared_dim

        # Input token embeddings
        # hidden_states: [B, T, D]
        B, T = hidden_states.shape[:2]
        H = self.num_heads
        
        

        # =============================
        #     Shared Query Space 
        # =============================
        # These are set to identity if no shared query space is used.

        # Project token embeddings into shared latents
        # Input:
        #     hidden_states [B, T, D]
        #     q_shared_proj [D, Dq_s]
        #    kv_shared_proj [D, Dkv]
        # Output:
        #          q_shared  [B, T, Dq_s]
        #          kv_shared [B, T, Dkv]
        q_shared = self.q_shared_proj(hidden_states)

        # Normalize latent vectors, shapes unchanged.
        q_shared = self.q_shared_norm(q_shared)

        # ================================
        #     Decomposed Query Heads
        # ================================


        # Project query latents onto decomposed query heads.
        # 
        # Down projection ('a')
        # Input:
        #     q_shared       [B, T, Dq_s]
        #     q_priv_a_proj [Dq_s, H*Dq_c]
        # Output:
        #     queries_c   [B, T, H*Dq_c]
        queries_c = self.q_priv_a_proj(q_shared)

        # Split the vectors by head
        # Input:
        #     queries_c        [B, T, H*Dq_c]
        # Output:
        #     queries_c   [B, T, H, Dq_c]
        queries_c = queries_c.view(B, T, H, Dq_c)
        
        # Up projection ('b')
        # Input:
        #     queries_c        [B, T, H, Dq_c]
        #     q_priv_b_weight        [H, Dq_c, Dkv]    
        # Output:
        #     queries     [B, H, T, Dkv]
        queries = torch.einsum("bthd,hdc->bhtc", queries_c, self.q_priv_b_weight)

        # ===================================
        #     Single Joint Key/Value Head
        # ===================================
    
        # Project token embeddings into single joint key/value head.
        # Input:
        #     hidden_states [B, T, D]
        #     kv_priv_proj [D, Dkv]
        # Output:
        #     keyvalue [B, T, Dkv]
        keyvalue = self.kv_priv_proj(hidden_states)

        # Apply QK normalization.
        keyvalue = self.kv_priv_norm(keyvalue)
        
        # Prepare the queries and keyvalue vectors for RoPE and flash attention.
        # We have multiple query heads, and the queries are in `queries`.
        # We have a single key head, and the keyvector is in `keyvalue`.

        # Move the head dimension to the front, so for each head, we have
        # a series of vectors for each token in the sequence.
        #
        # Inputs:
        #   keyvalue  [B, T, Dkv]
        # Output:
        #   keyvalue   [B, 1, T, Dkv]
        keyvalue = keyvalue.unsqueeze(1)

        # ==================
        #        RoPE
        # ==================
        # Apply rotary position embeddings to the first `self.rope_dims` of
        # each head.
        # The slice operations are free, but the concatenation is
        # not, because the outputs of the rotation operation are new data
        # occupying different memory. Still considered the best option,
        # though.

        # 1. Unpack the precomputed cosine and sine embeddings
        # Position embeddings is a tuple of
        #    (cos [seq_len, rope_dims],
        #     sin [seq_len, rope_dims])
        cos, sin = position_embeddings

        # 2. Split the query and key heads into the part to rotate and the part
        #    to pass through (early columns get position info, later ones don't)
        #
        #  (Using queries as example)
        #  Inputs:
        #    queries  [B, H, T, Dkv]  Dkv = rope_dims + not_rope_dims
        #  Outputs:
        #    q_rope   [B, H, T, Dr]
        #    q_pass   [B, H, T, Dkv-Dr]
        q_rope, q_pass = queries[..., :self.rope_dims], queries[..., self.rope_dims:]
        k_rope, k_pass =   keyvalue[..., :self.rope_dims],   keyvalue[..., self.rope_dims:]

        # 3. Apply the rotary embedding to the designated slice
        #
        # To broadcast cos and sin across the batch and head dimensions, we unsqueeze them.
        # Shape change: [T, Dr] -> [1, 1, T, Dr]
        cos = cos.unsqueeze(0).unsqueeze(0)
        sin = sin.unsqueeze(0).unsqueeze(0)

        #print("q_rope.shape[-1] // 2:", (q_rope.shape[-1] // 2))
        #print("x1 = x[..., :x.shape[-1] // 2 ].shape:", q_rope[..., :q_rope.shape[-1] // 2 ].shape)
        #print("sin/cos.shape:", cos.shape)
        #print("q_rope.shape:", q_rope.shape)
        #print("(q_rope * cos).shape:", (q_rope * cos).shape)
        #print("rotate_half(q_rope).shape:", rotate_half(q_rope).shape)
        #print("(rotate_half(q_rope) * sin).shape:", (rotate_half(q_rope) * sin).shape)
        """
        In this example   batch_size = 2, hum_heads = 8, seq_len = 65, rope_dims = 16

                        q_rope.shape[-1] // 2: 8
        x1 = x[..., :x.shape[-1] // 2 ].shape: torch.Size([2, 8, 65, 8])

                    sin/cos.shape: torch.Size([1, 1, 65, 16])  # After double unsqueeze.
                    vq_rope.shape: torch.Size([2, 8, 65, 16])

             (q_rope * cos).shape: torch.Size([2, 8, 65, 16])

        rotate_half(q_rope).shape: torch.Size([2, 8, 65, 16])
        (rotate_half(q_rope) * sin).shape: torch.Size([2, 8, 65, 16])
        """


        # Let's walk through the queries as the example.
        # What does rotate half do?
        #    dim -1 is the row vectors, the queries
        #
        #  Step 1: Split the vector in half.
        #    "q_rope.shape[-1] // 2" <- How much to select. Half the length of the q_rope vector
        #    x1 = x[..., :x.shape[-1] // 2 ]  # Select the first half of the vector.
        #    x2 = x[...,  x.shape[-1] // 2:]  # Select the second half.
        #
        #  Step 2:
        #      - Apply negative to the values in the second half.
        #      - Reverse the order of the halves.
        #    return torch.cat((-x2, x1), dim=-1)
        #
        # ---- (q_rope * cos) ----
        # Element-wise multiply the values in each `cos` vector with the
        # corresponding (i.e., same sequence position) `q_rope` vector.
        #
        # Inputs:
        #    q_rope  [B, H, T, Dr]
        #       cos  [1, 1, T, Dr]
        #
        # Outputs:
        #        x   [B, H, T, Dr]
        #
        # ---- (rotate_half(q_rope)) ----
        #  TODO
        #
        # Inputs:
        #       q_rope    [B, T, Dr]
        #
        # Outputs:
        #   rot_q_rope    [B, T, Dr]
        #
        # ---- rotated * sin ----
        #  TODO
        q_rotated = (q_rope * cos) + (rotate_half(q_rope) * sin)
        k_rotated = (k_rope * cos) + (rotate_half(k_rope) * sin)

        # 4. Concatenate the rotated and pass-through parts back together
        # Input (each): [B, H, T, Dr] and [B, H, T, Dkv-Dr]
        # Output (each): [B, H, T, Dkv]
        # (Where h = 1 for the key head and h = num_heads for the query heads)
        queries = torch.cat((q_rotated, q_pass), dim=-1)
        keyvalue = torch.cat((k_rotated, k_pass), dim=-1)

        # ====================
        #      GQA / MQA
        # ====================
        # GPT says that flash attention will infer the broadcasting, so `expand` is not needed.
        #
        # We need to use the `expand` operation to broadcast the keyvalue vector
        # across the query heads.
        # Input:
        #     keyvalue [B, 1, T, Dkv]
        # Output:
        #     keyvalue [B, H, T, Dkv]
        #keyvalue = keyvalue.expand(-1, H, -1, -1)

        # ===================
        #       Attention
        # ===================
        # We're ready for the attention score calculation.

        # Only apply dropout during training.
        # self.training is a pytorch flag.
        if self.training:
            dropout_p = self.attention_dropout_prob
        else:
            dropout_p = 0.0

        # Call SDPA / Flash Attention
        # https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
        # Apply MQA / GQA. In this case, we have a single key head, and multiple query heads.
        values = F.scaled_dot_product_attention(
            queries,
            keyvalue, # Single key vector (joint with value) for GQA / MQA.
            keyvalue, # Single value vector (joint with key) for GQA / MQA.
            attn_mask=None, # attention_mask,
            dropout_p=dropout_p,
            scale=self.softmax_scale,
            is_causal=True, # This is a decoder - apply causal masking
        )

        # Attention outputs:
        # values [B, H, T, Dkv]

        # The final Dr dims of the value vectors carry RoPE information.
        # We can either (1) add position dependence to the value-output process,
        # or (2) we can strip off the RoPE information and only use the non-RoPE parts.

        # Let's try option 1!

        # Split the values into the RoPE and non-RoPE parts.
        # Input:
        #     values [B, H, T, Dkv]
        # Output:
        #     values_rope [B, H, T, Dr]
        #     values_pass [B, H, T, Dkv-Dr]
        values_rope, values_pass = values[..., :self.rope_dims], values[..., self.rope_dims:]

        # Fold the query RoPE information into the value vectors.
        # Inverse rotation: R_{-ΞΈ} x  =  (x * cos)  - (rotate_half(x) * sin)
        # Input:
        #     values_rope [B, H, T, Dr]
        #            cos  [1, 1, T, Dr]
        #            sin  [1, 1, T, Dr]
        # Output:
        #     values_unrot [B, H, T, Dr]
        values_unrot = (values_rope * cos) - (rotate_half(values_rope) * sin)

        # Now the values have the offset information in their rope dimensions,
        # and the output heads can learn to use it.
        values = torch.cat((values_unrot, values_pass), dim=-1)  # [B,H,T,Dkv]

        # =========================
        #     Output Projection
        # =========================


        # Project the values onto the decomposed output heads.
        # Output down projection heads.
        # Input:
        #            values  [B, H, T, Dkv]
        #   o_priv_a_weight     [H, Dkv, Do_c]
        # Output:
        #         outputs_c  [B, H, T, Do_c]
        outputs_c = torch.einsum("bhtd,hdc->bhtc", values, self.o_priv_a_weight)

        # For the up projection, we can concatenate the 'outputs_c' vectors by head,
        # (in the same way we would usually concatenate the value vectors)
        # Input:
        #    outputs_c  [B, H, T, Do_c]
        # Output:
        #   outputs_c  [B, T, H*Do_c]
        
        outputs_c = outputs_c.permute(0, 2, 1, 3).contiguous().view(B, T, H * Do_c)

        # Project up to the shared output space and sum across the output heads.
        # Input:
        #    outputs_c  [B, T, H*Do_c]
        #    o_priv_b_proj [H*Do_c, Do_s]
        # Output:
        #    output_s  [B, T, Do_s]
        output_s = self.o_priv_b_proj(outputs_c)
        
        # Apply normalization to the output latents
        output_s = self.o_shared_norm(output_s)

        # Re-project the output latent representation back to model space.
        # Input:
        #    output_s      [B, T, Do_s]
        #    o_shared_proj [Do_s, D]
        # Output:
        #    attn_output   [B, T, D]
        attn_output = self.o_shared_proj(output_s)

        # TODO - Not currently supported.
        # If this is a dense layer,
        # Project the values back into model space.
        # attn_output = self.o_proj(attn_output)

        # -----------------------------------------

        return attn_output