"""ASR pipeline for audio-to-text transcription with optional timestamps and diarization.""" import re from pathlib import Path from typing import Any import numpy as np import torch import transformers try: from .alignment import ForcedAligner from .asr_modeling import ASRModel from .diarization import SpeakerDiarizer except ImportError: from alignment import ForcedAligner # type: ignore[no-redef] from asr_modeling import ASRModel # type: ignore[no-redef] from diarization import SpeakerDiarizer # type: ignore[no-redef] # Re-export for backwards compatibility __all__ = ["ForcedAligner", "SpeakerDiarizer", "ASRPipeline"] class ASRPipeline(transformers.AutomaticSpeechRecognitionPipeline): """ASR Pipeline for audio-to-text transcription.""" model: ASRModel def __init__(self, model: ASRModel, **kwargs): """Initialize ASR pipeline. Args: model: ASRModel instance for transcription **kwargs: Additional arguments (feature_extractor, tokenizer, device) """ feature_extractor = kwargs.pop("feature_extractor", None) tokenizer = kwargs.pop("tokenizer", model.tokenizer) if feature_extractor is None: feature_extractor = model.get_processor().feature_extractor super().__init__( model=model, feature_extractor=feature_extractor, tokenizer=tokenizer, **kwargs ) self._current_audio = None def _sanitize_parameters(self, **kwargs): """Intercept our custom parameters before parent class validates them.""" # Remove our custom parameters so parent doesn't see them kwargs.pop("return_timestamps", None) kwargs.pop("return_speakers", None) kwargs.pop("num_speakers", None) kwargs.pop("min_speakers", None) kwargs.pop("max_speakers", None) kwargs.pop("hf_token", None) kwargs.pop("user_prompt", None) kwargs.pop("diarization_backend", None) return super()._sanitize_parameters(**kwargs) def __call__( self, inputs, **kwargs, ): """Transcribe audio with optional word-level timestamps and speaker diarization. Args: inputs: Audio input (file path, dict with array/sampling_rate, etc.) return_timestamps: If True, return word-level timestamps using forced alignment return_speakers: If True, return speaker labels for each word user_prompt: Custom transcription prompt (default: "Transcribe: ") num_speakers: Exact number of speakers (if known, for diarization) min_speakers: Minimum number of speakers (for diarization) max_speakers: Maximum number of speakers (for diarization) **kwargs: Additional arguments passed to the pipeline Returns: Dict with 'text' key, 'words' key if return_timestamps=True, and speaker labels on words if return_speakers=True """ # Extract our params before super().__call__ (which will also call _sanitize_parameters) return_timestamps = kwargs.pop("return_timestamps", False) return_speakers = kwargs.pop("return_speakers", False) user_prompt = kwargs.pop("user_prompt", None) diarization_params = { "num_speakers": kwargs.pop("num_speakers", None), "min_speakers": kwargs.pop("min_speakers", None), "max_speakers": kwargs.pop("max_speakers", None), } if return_speakers: return_timestamps = True # Set custom user prompt if provided original_prompt = None if user_prompt: original_prompt = self.model.TRANSCRIBE_PROMPT self.model.TRANSCRIBE_PROMPT = user_prompt # Store audio for timestamp alignment and diarization if return_timestamps or return_speakers: self._current_audio = self._extract_audio(inputs) # Run standard transcription result = super().__call__(inputs, **kwargs) # Add timestamps if requested if return_timestamps and self._current_audio is not None: text = result.get("text", "") if text: try: words = ForcedAligner.align( self._current_audio["array"], text, sample_rate=self._current_audio.get("sampling_rate", 16000), ) result["words"] = words except Exception as e: result["words"] = [] result["timestamp_error"] = str(e) else: result["words"] = [] # Add speaker diarization if requested if return_speakers and self._current_audio is not None: try: # Run diarization speaker_segments = SpeakerDiarizer.diarize( self._current_audio["array"], sample_rate=self._current_audio.get("sampling_rate", 16000), **{k: v for k, v in diarization_params.items() if v is not None}, ) result["speaker_segments"] = speaker_segments # Assign speakers to words if result.get("words"): result["words"] = SpeakerDiarizer.assign_speakers_to_words( result["words"], speaker_segments, ) except Exception as e: result["speaker_segments"] = [] result["diarization_error"] = str(e) # Clean up self._current_audio = None if original_prompt is not None: self.model.TRANSCRIBE_PROMPT = original_prompt return result def _extract_audio(self, inputs) -> dict | None: """Extract audio array from various input formats using HF utilities.""" from transformers.pipelines.audio_utils import ffmpeg_read if isinstance(inputs, dict): if "array" in inputs: return { "array": inputs["array"], "sampling_rate": inputs.get("sampling_rate", 16000), } if "raw" in inputs: return { "array": inputs["raw"], "sampling_rate": inputs.get("sampling_rate", 16000), } elif isinstance(inputs, str): # File path - load audio using ffmpeg (same as HF pipeline) with Path(inputs).open("rb") as f: audio = ffmpeg_read(f.read(), sampling_rate=16000) return {"array": audio, "sampling_rate": 16000} elif isinstance(inputs, bytes): audio = ffmpeg_read(inputs, sampling_rate=16000) return {"array": audio, "sampling_rate": 16000} elif isinstance(inputs, np.ndarray): return {"array": inputs, "sampling_rate": 16000} return None def preprocess(self, inputs, **preprocess_params): """Preprocess audio inputs for the model. Args: inputs: Audio input (dict with array, file path, etc.) **preprocess_params: Additional preprocessing parameters Yields: Model input dicts with input_features and attention_mask """ # Handle dict with "array" key (from datasets) if isinstance(inputs, dict) and "array" in inputs: inputs = { "raw": inputs["array"], "sampling_rate": inputs.get("sampling_rate", self.feature_extractor.sampling_rate), } for item in super().preprocess(inputs, **preprocess_params): if "is_last" not in item: item["is_last"] = True yield item def _forward(self, model_inputs, **generate_kwargs) -> dict[str, Any]: """Run model forward pass to generate transcription. Args: model_inputs: Dict with input_features and attention_mask **generate_kwargs: Generation parameters Returns: Dict with generated token IDs """ # Extract audio features and is_last flag is_last = model_inputs.pop("is_last", True) if isinstance(model_inputs, dict) else True input_features = model_inputs["input_features"].to(self.model.device) audio_attention_mask = model_inputs["attention_mask"].to(self.model.device) generated_ids = self.model.generate( input_features=input_features, audio_attention_mask=audio_attention_mask, **generate_kwargs, ) return {"tokens": generated_ids, "is_last": is_last} def postprocess(self, model_outputs, **kwargs) -> dict[str, str]: """Convert model output tokens to text. Args: model_outputs: Dict with 'tokens' key containing generated IDs **kwargs: Additional postprocessing parameters Returns: Dict with 'text' key containing transcription """ # Handle list of outputs (from chunking) if isinstance(model_outputs, list): model_outputs = model_outputs[0] if model_outputs else {} tokens = model_outputs.get("tokens") if tokens is None: return super().postprocess(model_outputs, **kwargs) if torch.is_tensor(tokens): tokens = tokens.cpu() if tokens.dim() > 1: tokens = tokens[0] # Filter out eos tokens that the tokenizer doesn't recognize as special # (generation_config.eos_token_id may differ from tokenizer.eos_token_id) if hasattr(self, "model") and hasattr(self.model, "generation_config"): eos_ids = self.model.generation_config.eos_token_id if eos_ids is not None: eos_set = set(eos_ids) if isinstance(eos_ids, list) else {eos_ids} tokens = [t for t in tokens.tolist() if t not in eos_set] text = self.tokenizer.decode(tokens, skip_special_tokens=True).strip() # Strip ... tags (Qwen3 doesn't respect /no_think prompt) text = re.sub(r".*?\s*", "", text, flags=re.DOTALL).strip() # Truncate repetitions at end of text text = _truncate_repetitions(text) return {"text": text} def _truncate_repetitions(text: str, min_repeats: int = 3) -> str: """Truncate repeated words/phrases/characters at end of text. Detects patterns like: - Repeated words: "the the the the" -> "the" - Repeated phrases: "i am sorry i am sorry i am sorry" -> "i am sorry" - Repeated characters: "444444" -> "4" Args: text: Input text to process min_repeats: Minimum repetitions to trigger truncation (default 3) Returns: Text with trailing repetitions removed """ if not text: return text # 1. Truncate repeated characters at end (e.g., "444444" -> "4") char_pattern = re.compile(r"(.)\1{" + str(min_repeats - 1) + r",}$") text = char_pattern.sub(r"\1", text) # 2. Truncate repeated words at end (e.g., "the the the" -> "the") word_pattern = re.compile( r"\b(\w+)(?:\s+\1){" + str(min_repeats - 1) + r",}\s*$", re.IGNORECASE ) while word_pattern.search(text): text = word_pattern.sub(r"\1", text) # 3. Truncate repeated phrases (2-20 words) at end # e.g., "i am sorry i am sorry i am sorry" -> "i am sorry" words = text.split() if len(words) >= min_repeats * 2: # Try phrase lengths from 2 to 20 words for phrase_len in range(2, min(21, len(words) // min_repeats + 1)): # Check if the last phrase_len words repeat phrase = " ".join(words[-phrase_len:]) # Build pattern to match repeated phrases at end phrase_escaped = re.escape(phrase) phrase_pattern = re.compile( r"(^|.*?\s)(" + phrase_escaped + r")(?:\s+" + phrase_escaped + r"){" + str(min_repeats - 1) + r",}\s*$", re.IGNORECASE, ) match = phrase_pattern.match(text) if match: # Keep prefix + one instance of the phrase text = (match.group(1) + match.group(2)).strip() words = text.split() break return text