Automatic Speech Recognition
MLX
German
whisper
Eval Results
File size: 1,291 Bytes
306f036
5ee09ea
 
 
306f036
5ee09ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306f036
 
 
 
 
5ee09ea
306f036
5ee09ea
306f036
 
 
 
 
761f463
 
306f036
c48a862
 
 
761f463
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
language:
- de
library_name: mlx
pipeline_tag: automatic-speech-recognition
model-index:
- name: mlx version of whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: German ASR Data-Mix
      type: flozi00/asr-german-mixed
    metrics:
    - type: wer
      value: 2.628 %
      name: Test WER
datasets:
- flozi00/asr-german-mixed
- flozi00/asr-german-mixed-evals
base_model:
- primeline/whisper-large-v3-german
---

# whisper-large-v3-turbo-german-f16
This model was converted to MLX format from primeline/whisper-large-v3-turbo-german

made with a [custom script for converting safetensor whisper models](https://github.com/CrispStrobe/mlx-examples/blob/main/whisper/convert_safetensors.py). 

it is in float16, works well. quantized version: [4bit, float16](https://huggingface.co/mlx-community/whisper-large-v3-turbo-german-f16-q4)

## Use with MLX
```bash
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/whisper/
pip install -r requirements.txt
```

```python
import mlx_whisper
result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="mlx-community/whisper-large-v3-turbo-german-f16")
print(result)
```