Delete files _fully_shard.py with huggingface_hub
Browse files- _fully_shard.py +0 -672
_fully_shard.py
DELETED
|
@@ -1,672 +0,0 @@
|
|
| 1 |
-
# mypy: allow-untyped-decorators
|
| 2 |
-
# mypy: allow-untyped-defs
|
| 3 |
-
|
| 4 |
-
from __future__ import annotations
|
| 5 |
-
|
| 6 |
-
import functools
|
| 7 |
-
from typing import (
|
| 8 |
-
Any,
|
| 9 |
-
Callable,
|
| 10 |
-
cast,
|
| 11 |
-
NoReturn,
|
| 12 |
-
Optional,
|
| 13 |
-
overload,
|
| 14 |
-
TYPE_CHECKING,
|
| 15 |
-
Union,
|
| 16 |
-
)
|
| 17 |
-
from typing_extensions import deprecated
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
import torch.nn as nn
|
| 21 |
-
from torch.distributed._composable import contract
|
| 22 |
-
from torch.distributed.utils import _get_root_modules
|
| 23 |
-
|
| 24 |
-
from ._fsdp_api import MixedPrecisionPolicy, OffloadPolicy
|
| 25 |
-
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo
|
| 26 |
-
from ._fsdp_init import (
|
| 27 |
-
_get_device_from_mesh,
|
| 28 |
-
_get_managed_modules,
|
| 29 |
-
_get_managed_states,
|
| 30 |
-
_get_post_forward_mesh_info,
|
| 31 |
-
_init_default_fully_shard_mesh,
|
| 32 |
-
_move_states_to_device,
|
| 33 |
-
)
|
| 34 |
-
from ._fsdp_param_group import FSDPParamGroup
|
| 35 |
-
from ._fsdp_state import _get_module_fsdp_state, FSDPState
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
if TYPE_CHECKING:
|
| 39 |
-
from collections.abc import Iterable
|
| 40 |
-
|
| 41 |
-
from torch.distributed.tensor import DeviceMesh, Shard
|
| 42 |
-
|
| 43 |
-
__all__ = [
|
| 44 |
-
"fully_shard",
|
| 45 |
-
"FSDPModule",
|
| 46 |
-
"UnshardHandle",
|
| 47 |
-
"register_fsdp_forward_method",
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
cls_to_fsdp_cls: dict[type, type] = {}
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
@overload
|
| 55 |
-
def fully_shard(
|
| 56 |
-
module: nn.Module,
|
| 57 |
-
*,
|
| 58 |
-
mesh: Optional[DeviceMesh] = ...,
|
| 59 |
-
reshard_after_forward: Union[bool, int] = ...,
|
| 60 |
-
shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = ...,
|
| 61 |
-
mp_policy: MixedPrecisionPolicy = ...,
|
| 62 |
-
offload_policy: OffloadPolicy = ...,
|
| 63 |
-
ignored_params: Optional[set[nn.Parameter]] = ...,
|
| 64 |
-
) -> FSDPModule: ...
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
@overload
|
| 68 |
-
def fully_shard(
|
| 69 |
-
module: list[nn.Module],
|
| 70 |
-
*,
|
| 71 |
-
mesh: Optional[DeviceMesh] = ...,
|
| 72 |
-
reshard_after_forward: Union[bool, int] = ...,
|
| 73 |
-
shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = ...,
|
| 74 |
-
mp_policy: MixedPrecisionPolicy = ...,
|
| 75 |
-
offload_policy: OffloadPolicy = ...,
|
| 76 |
-
ignored_params: Optional[set[nn.Parameter]] = ...,
|
| 77 |
-
) -> list[FSDPModule]: ...
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# The decorator adds a state object to `module` that can be accessed via
|
| 81 |
-
# `fully_shard.state(module)`. The state object and module are 1:1.
|
| 82 |
-
# [1] Python runtime decorator does not play well with static type checking
|
| 83 |
-
# so suppressing some type checks to support type overloads
|
| 84 |
-
# such that caller can still get correct return types based on input type
|
| 85 |
-
@contract(state_cls=FSDPState) # type: ignore[misc] # see [1]
|
| 86 |
-
def fully_shard(
|
| 87 |
-
module,
|
| 88 |
-
*,
|
| 89 |
-
mesh: Optional[DeviceMesh] = None,
|
| 90 |
-
reshard_after_forward: Optional[Union[bool, int]] = None,
|
| 91 |
-
shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = None,
|
| 92 |
-
mp_policy: MixedPrecisionPolicy = MixedPrecisionPolicy(),
|
| 93 |
-
offload_policy: OffloadPolicy = OffloadPolicy(),
|
| 94 |
-
ignored_params: Optional[set[nn.Parameter]] = None,
|
| 95 |
-
):
|
| 96 |
-
"""
|
| 97 |
-
Apply fully sharded data parallelism (FSDP) to ``module``, where FSDP
|
| 98 |
-
shards module parameters, gradients, and optimizer states across data
|
| 99 |
-
parallel workers to save memory at the cost of communication.
|
| 100 |
-
|
| 101 |
-
At initialization, FSDP shards the module's parameters across the data
|
| 102 |
-
parallel workers given by ``mesh``. Before forward, FSDP all-gathers the
|
| 103 |
-
sharded parameters across the data-parallel workers to get the unsharded
|
| 104 |
-
parameters for forward computation. If ``reshard_after_forward`` is
|
| 105 |
-
``True``, then FSDP frees the unsharded parameters after forward and
|
| 106 |
-
re-all-gathers them in backward before gradient computation. After gradient
|
| 107 |
-
computation, FSDP frees the unsharded parameters and reduce-scatters the
|
| 108 |
-
unsharded gradients across data-parallel workers.
|
| 109 |
-
|
| 110 |
-
This implementation represents the sharded parameters as :class:`DTensor` s
|
| 111 |
-
sharded on dim-0, while the unsharded parameters will be like the original
|
| 112 |
-
parameters on ``module`` (e.g. :class:`torch.Tensor` if originally
|
| 113 |
-
:class:`torch.Tensor`). A module
|
| 114 |
-
`forward pre-hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_pre_hook>`_
|
| 115 |
-
on ``module`` all-gathers the parameters, and a module
|
| 116 |
-
`forward hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook>`_
|
| 117 |
-
on ``module`` frees them (if needed). Similar backward hooks all-gather
|
| 118 |
-
parameters and later free parameters and reduce-scatter gradients.
|
| 119 |
-
|
| 120 |
-
Since grouping multiple tensors together for one collective is critical for
|
| 121 |
-
communication efficiency, this implementation makes this grouping first
|
| 122 |
-
class. Calling :meth:`fully_shard` on ``module`` constructs one group that
|
| 123 |
-
includes the parameters in ``module.parameters()`` except those already
|
| 124 |
-
assigned to a group from an earlier call on a submodule. This means that
|
| 125 |
-
:meth:`fully_shard` should be called bottom-up on your model. Each group's
|
| 126 |
-
parameters are all-gathered in one collective, and its gradients are
|
| 127 |
-
reduce-scattered in one collective. Partitioning the model into multiple
|
| 128 |
-
groups ("layer by layer") allows for peak memory savings and communication/computation
|
| 129 |
-
overlap. Users generally should *not* call :meth:`fully_shard` only on the
|
| 130 |
-
topmost root module.
|
| 131 |
-
|
| 132 |
-
Args:
|
| 133 |
-
module (Union[nn.Module, List[nn.Module]): The module or modules to
|
| 134 |
-
shard with FSDP and group together for communication.
|
| 135 |
-
mesh (Optional[DeviceMesh]): This data parallel mesh defines the
|
| 136 |
-
sharding and device. If 1D, then parameters are fully sharded
|
| 137 |
-
across the 1D mesh (FSDP) with ``(Shard(0),)`` placement. If 2D,
|
| 138 |
-
then parameters are sharded across the 1st dim and replicated
|
| 139 |
-
across the 0th dim (HSDP) with ``(Replicate(), Shard(0))``
|
| 140 |
-
placement. The mesh's device type gives the device type used for
|
| 141 |
-
communication; if a CUDA or CUDA-like device type, then we use the
|
| 142 |
-
current device.
|
| 143 |
-
reshard_after_forward (Optional[Union[bool, int]]): This controls the parameter
|
| 144 |
-
behavior after forward and can trade off memory and communication:
|
| 145 |
-
|
| 146 |
-
- If ``True``, then this reshards parameters after forward and
|
| 147 |
-
re-all-gathers in backward.
|
| 148 |
-
- If ``False``, then this keeps the unsharded parameters in memory
|
| 149 |
-
after forward and avoids the all-gather in backward. For best performance,
|
| 150 |
-
we usually set ``False`` for the root module, because the root module
|
| 151 |
-
is typically required immediately when the backward pass begins.
|
| 152 |
-
- If ``None``, it is set to ``True`` for non-root modules and ``False``
|
| 153 |
-
for root modules.
|
| 154 |
-
- If an ``int``, then this represents the world size to reshard to
|
| 155 |
-
after forward. It should be a non-trivial divisor of the ``mesh``
|
| 156 |
-
shard dim size (i.e. excluding 1 and the dim size itself). A
|
| 157 |
-
choice may be the intra-node size (e.g. ``torch.cuda.device_count()``).
|
| 158 |
-
This allows the all-gather in backward to be over a smaller world
|
| 159 |
-
size at the cost of higher memory usage than setting to ``True``.
|
| 160 |
-
- After forward, the parameters registered to the module depend on
|
| 161 |
-
to this: The registered parameters are the sharded parameters if
|
| 162 |
-
``True``; unsharded parameters if ``False``; and the parameters
|
| 163 |
-
resharded to the smaller mesh otherwise. To modify the parameters
|
| 164 |
-
between forward and backward, the registered parameters must be
|
| 165 |
-
the sharded parameters. For ``False`` or an ``int``, this can be
|
| 166 |
-
done by manually resharding via :meth:`reshard`.
|
| 167 |
-
shard_placement_fn (Optional[Callable[[nn.Parameter], Optional[Shard]]]):
|
| 168 |
-
This callable can be used to override the sharding placement for a
|
| 169 |
-
parameter to shard a parameter on a dimension other than dim-0. If
|
| 170 |
-
this callable returns a :class:`Shard` placement (not ``None``),
|
| 171 |
-
then FSDP will shard according to that placement (e.g. ``Shard(1)``).
|
| 172 |
-
If sharding on a nonzero dim, we currently require even sharding,
|
| 173 |
-
i.e. the tensor dim size on that dim must be divisible by the FSDP
|
| 174 |
-
shard mesh size.
|
| 175 |
-
mp_policy (MixedPrecisionPolicy): This controls the mixed precision
|
| 176 |
-
policy, which offers parameter/reduction mixed precision for this
|
| 177 |
-
module. See :class:`MixedPrecisionPolicy` for details.
|
| 178 |
-
offload_policy (OffloadPolicy): This controls the offloading policy,
|
| 179 |
-
which offers parameter/gradient/optimizer state offloading. See
|
| 180 |
-
:class:`OffloadPolicy` and its subclasses for details.
|
| 181 |
-
ignored_params: Optional(Set[nn.Parameter]): The set of parameters to be
|
| 182 |
-
ignored by FSDP. They will not be sharded, nor moved to the device
|
| 183 |
-
during init, nor have their gradients reduced in backward.
|
| 184 |
-
|
| 185 |
-
Returns:
|
| 186 |
-
FSDPModule: The module with FSDP applied (in-place).
|
| 187 |
-
"""
|
| 188 |
-
torch._C._log_api_usage_once("torch.distributed.fsdp.fully_shard")
|
| 189 |
-
if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
|
| 190 |
-
raise ValueError(
|
| 191 |
-
f"fully_shard does not support containers that do not implement forward: {module}"
|
| 192 |
-
)
|
| 193 |
-
mesh = mesh or _init_default_fully_shard_mesh()
|
| 194 |
-
if mesh.ndim not in (1, 2):
|
| 195 |
-
raise ValueError(f"fully_shard expects a 1D or 2D DeviceMesh but got {mesh}")
|
| 196 |
-
elif mesh.ndim == 1:
|
| 197 |
-
mesh_info = FSDPMeshInfo(mesh, shard_mesh_dim=0)
|
| 198 |
-
else:
|
| 199 |
-
if mesh.mesh_dim_names is None:
|
| 200 |
-
raise AssertionError(
|
| 201 |
-
"Please init the 2D mesh for HSDP with mesh_dim_names specified"
|
| 202 |
-
)
|
| 203 |
-
mesh_info = HSDPMeshInfo(mesh, shard_mesh_dim=1, replicate_mesh_dim=0)
|
| 204 |
-
device = _get_device_from_mesh(mesh)
|
| 205 |
-
auto_reshard_after_forward = reshard_after_forward is None
|
| 206 |
-
# If the user does not provide ``reshard_after_forward``, we set it to True.
|
| 207 |
-
# During lazy_init, we identify which module is the root and override its value to False
|
| 208 |
-
post_forward_mesh_info = _get_post_forward_mesh_info(
|
| 209 |
-
reshard_after_forward if not auto_reshard_after_forward else True, # type: ignore[arg-type]
|
| 210 |
-
mesh_info,
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
arg_module = module
|
| 214 |
-
modules = (
|
| 215 |
-
(module,) if isinstance(module, nn.Module) else tuple(_get_root_modules(module))
|
| 216 |
-
)
|
| 217 |
-
state = fully_shard.state(modules[0]) # type: ignore[attr-defined] # see [1]
|
| 218 |
-
state.init(modules, device, mp_policy, auto_reshard_after_forward)
|
| 219 |
-
|
| 220 |
-
managed_modules = _get_managed_modules(modules, ignored_params)
|
| 221 |
-
params, buffers = _get_managed_states(managed_modules, ignored_params)
|
| 222 |
-
|
| 223 |
-
_move_states_to_device(params, buffers, device)
|
| 224 |
-
if params:
|
| 225 |
-
state._fsdp_param_group = FSDPParamGroup(
|
| 226 |
-
params,
|
| 227 |
-
modules,
|
| 228 |
-
mesh_info,
|
| 229 |
-
post_forward_mesh_info,
|
| 230 |
-
device,
|
| 231 |
-
shard_placement_fn,
|
| 232 |
-
mp_policy,
|
| 233 |
-
offload_policy,
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
# For Dynamo
|
| 237 |
-
for managed_module in managed_modules:
|
| 238 |
-
managed_module._is_fsdp_managed_module = True # type: ignore[assignment]
|
| 239 |
-
managed_module._fsdp_use_orig_params = True # type: ignore[assignment]
|
| 240 |
-
|
| 241 |
-
# Place FSDP leftmost for highest priority in the method resolution order
|
| 242 |
-
for module in modules:
|
| 243 |
-
cls = module.__class__
|
| 244 |
-
new_cls = cls_to_fsdp_cls.get(cls, None)
|
| 245 |
-
if not new_cls:
|
| 246 |
-
dct = {"__deepcopy__": _unimplemented_deepcopy}
|
| 247 |
-
new_cls = type(f"FSDP{cls.__name__}", (FSDPModule, cls), dct)
|
| 248 |
-
cls_to_fsdp_cls[cls] = new_cls
|
| 249 |
-
module.__class__ = new_cls
|
| 250 |
-
return arg_module
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
def _unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
|
| 254 |
-
raise AssertionError(
|
| 255 |
-
"FSDP does not support deepcopy. Please use state dict for serialization."
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
class FSDPModule:
|
| 260 |
-
def __new__(cls, *args, **kwargs):
|
| 261 |
-
"""
|
| 262 |
-
Override ``__new__`` to remove the FSDP class and directly construct
|
| 263 |
-
the original class for cases like indexing into a container module.
|
| 264 |
-
"""
|
| 265 |
-
# Use index 2 since 0 is the dynamically constructed `FSDP<...>` class
|
| 266 |
-
# and index 1 is the `FSDPModule` class itself
|
| 267 |
-
orig_cls = cls.__mro__[2]
|
| 268 |
-
self = orig_cls.__new__(orig_cls, *args, **kwargs)
|
| 269 |
-
self.__init__(*args, **kwargs)
|
| 270 |
-
return self
|
| 271 |
-
|
| 272 |
-
def reshard(self) -> None:
|
| 273 |
-
"""
|
| 274 |
-
Reshards the module's parameters, freeing the unsharded parameters if
|
| 275 |
-
they are allocated and registering the sharded parameters to the
|
| 276 |
-
module. This method is *not* recursive.
|
| 277 |
-
"""
|
| 278 |
-
state = self._get_fsdp_state()
|
| 279 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 280 |
-
fsdp_param_group.reshard()
|
| 281 |
-
|
| 282 |
-
def unshard(self, async_op: bool = False) -> Optional[UnshardHandle]:
|
| 283 |
-
"""
|
| 284 |
-
Unshards the module's parameters by allocating memory and all-gathering
|
| 285 |
-
the parameters. This method is *not* recursive. The unshard follows the
|
| 286 |
-
:class:`MixedPrecisionPolicy`, so it will all-gather following
|
| 287 |
-
``param_dtype`` if set.
|
| 288 |
-
|
| 289 |
-
Args:
|
| 290 |
-
async_op (bool): If ``True``, then returns a :class:`UnshardHandle`
|
| 291 |
-
that has a :meth:`wait` method to wait on the unshard op. If
|
| 292 |
-
``False``, then returns ``None`` and waits on the handle inside
|
| 293 |
-
this function.
|
| 294 |
-
|
| 295 |
-
.. note:: If ``async_op=True``, then FSDP will wait on the pending
|
| 296 |
-
unshard in the module's pre-forward for the user. The user only
|
| 297 |
-
needs to call :meth:`wait` explicitly if the wait should happen
|
| 298 |
-
before pre-forward.
|
| 299 |
-
"""
|
| 300 |
-
state = self._get_fsdp_state()
|
| 301 |
-
fsdp_param_group = state._fsdp_param_group
|
| 302 |
-
if fsdp_param_group is not None:
|
| 303 |
-
fsdp_param_group.lazy_init()
|
| 304 |
-
fsdp_param_group.unshard(async_op=async_op)
|
| 305 |
-
handle = _UnshardHandleImpl(fsdp_param_group)
|
| 306 |
-
if async_op:
|
| 307 |
-
return handle
|
| 308 |
-
handle.wait()
|
| 309 |
-
return None
|
| 310 |
-
|
| 311 |
-
def set_is_last_backward(self, is_last_backward: bool) -> None:
|
| 312 |
-
"""
|
| 313 |
-
Sets whether the next backward is the last one. On the last backward,
|
| 314 |
-
FSDP waits on pending gradient reduction and clears internal data
|
| 315 |
-
data structures for backward prefetching. This can be useful for
|
| 316 |
-
microbatching.
|
| 317 |
-
"""
|
| 318 |
-
state = self._get_fsdp_state()
|
| 319 |
-
state._state_ctx.is_last_backward = is_last_backward
|
| 320 |
-
|
| 321 |
-
def set_requires_gradient_sync(
|
| 322 |
-
self, requires_gradient_sync: bool, *, recurse: bool = True
|
| 323 |
-
) -> None:
|
| 324 |
-
"""
|
| 325 |
-
Sets if the module should sync gradients. This can be used to implement
|
| 326 |
-
gradient accumulation *without communication*. For HSDP, this controls
|
| 327 |
-
both reduce-scatter and all-reduce together. This is the equivalence of
|
| 328 |
-
`no_sync` in FSDP1.
|
| 329 |
-
|
| 330 |
-
Args:
|
| 331 |
-
requires_gradient_sync (bool): Whether to reduce gradients for the
|
| 332 |
-
module's parameters.
|
| 333 |
-
recurse (bool): Whether to set for all FSDP submodules or just the
|
| 334 |
-
passed-in module.
|
| 335 |
-
"""
|
| 336 |
-
self_module = cast(nn.Module, self)
|
| 337 |
-
modules = list(self_module.modules()) if recurse else [self_module]
|
| 338 |
-
for module in modules:
|
| 339 |
-
if isinstance(module, FSDPModule):
|
| 340 |
-
state = module._get_fsdp_state()
|
| 341 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 342 |
-
fsdp_param_group.reduce_grads = requires_gradient_sync
|
| 343 |
-
fsdp_param_group.all_reduce_grads = requires_gradient_sync
|
| 344 |
-
|
| 345 |
-
def set_requires_all_reduce(
|
| 346 |
-
self, requires_all_reduce: bool, *, recurse: bool = True
|
| 347 |
-
) -> None:
|
| 348 |
-
"""
|
| 349 |
-
Sets if the module should all-reduce gradients. This can be used to
|
| 350 |
-
implement gradient accumulation with only reduce-scatter but not
|
| 351 |
-
all-reduce for HSDP.
|
| 352 |
-
"""
|
| 353 |
-
self_module = cast(nn.Module, self)
|
| 354 |
-
modules = list(self_module.modules()) if recurse else [self_module]
|
| 355 |
-
for module in modules:
|
| 356 |
-
if isinstance(module, FSDPModule):
|
| 357 |
-
state = module._get_fsdp_state()
|
| 358 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 359 |
-
fsdp_param_group.all_reduce_grads = requires_all_reduce
|
| 360 |
-
|
| 361 |
-
def set_reshard_after_forward(
|
| 362 |
-
self, reshard_after_forward: bool, recurse: bool = True
|
| 363 |
-
) -> None:
|
| 364 |
-
"""
|
| 365 |
-
Sets if the module should reshard parameters after forward. This can be
|
| 366 |
-
used to change the ``reshard_after_forward`` FSDP arg at runtime. For
|
| 367 |
-
example, this can be used to set the FSDP root module's value to
|
| 368 |
-
``True`` (since it is otherwise specially set to ``False``), or it can
|
| 369 |
-
set an FSDP module's value to ``False`` for running evals and set back
|
| 370 |
-
to ``True`` for training.
|
| 371 |
-
|
| 372 |
-
Args:
|
| 373 |
-
reshard_after_forward (bool): Whether to reshard parameters after
|
| 374 |
-
forward.
|
| 375 |
-
recurse (bool): Whether to set for all FSDP submodules or just the
|
| 376 |
-
passed-in module.
|
| 377 |
-
"""
|
| 378 |
-
if not isinstance(reshard_after_forward, bool):
|
| 379 |
-
raise ValueError(
|
| 380 |
-
f"reshard_after_forward should be a bool, got {type(reshard_after_forward)}"
|
| 381 |
-
)
|
| 382 |
-
self_module = cast(nn.Module, self)
|
| 383 |
-
modules = list(self_module.modules()) if recurse else [self_module]
|
| 384 |
-
for module in modules:
|
| 385 |
-
if isinstance(module, FSDPModule):
|
| 386 |
-
state = module._get_fsdp_state()
|
| 387 |
-
state._auto_reshard_after_forward = False
|
| 388 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 389 |
-
fsdp_param_group.post_forward_mesh_info = (
|
| 390 |
-
_get_post_forward_mesh_info(
|
| 391 |
-
reshard_after_forward, fsdp_param_group.mesh_info
|
| 392 |
-
)
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
def set_reshard_after_backward(
|
| 396 |
-
self, reshard_after_backward: bool, *, recurse: bool = True
|
| 397 |
-
) -> None:
|
| 398 |
-
"""
|
| 399 |
-
Sets if the module should reshard parameters after backward. This can
|
| 400 |
-
be used during gradient accumulation to trade off higher memory for
|
| 401 |
-
reduced communication since the unsharded parameters do not need to be
|
| 402 |
-
re-all-gathered before the next forward.
|
| 403 |
-
|
| 404 |
-
Args:
|
| 405 |
-
reshard_after_backward (bool): Whether to reshard parameters after
|
| 406 |
-
backward.
|
| 407 |
-
recurse (bool): Whether to set for all FSDP submodules or just the
|
| 408 |
-
passed-in module.
|
| 409 |
-
"""
|
| 410 |
-
self_module = cast(nn.Module, self)
|
| 411 |
-
modules = list(self_module.modules()) if recurse else [self_module]
|
| 412 |
-
for module in modules:
|
| 413 |
-
if isinstance(module, FSDPModule):
|
| 414 |
-
state = module._get_fsdp_state()
|
| 415 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 416 |
-
fsdp_param_group.reshard_after_backward = reshard_after_backward
|
| 417 |
-
|
| 418 |
-
def set_modules_to_forward_prefetch(self, modules: list[FSDPModule]) -> None:
|
| 419 |
-
"""
|
| 420 |
-
Sets the FSDP modules for which this FSDP module should explicitly
|
| 421 |
-
prefetch all-gathers in forward. The prefetching runs after this
|
| 422 |
-
module's all-gather copy-out.
|
| 423 |
-
|
| 424 |
-
Passing a singleton list containing the next FSDP module gives the same
|
| 425 |
-
all-gather overlap behavior as the default overlap behavior, except the
|
| 426 |
-
prefetched all-gather is issued earlier from the CPU. Passing a list
|
| 427 |
-
with at least length two is required for more aggressive overlap and
|
| 428 |
-
will use more reserved memory.
|
| 429 |
-
|
| 430 |
-
Args:
|
| 431 |
-
modules (List[FSDPModule]): FSDP modules to prefetch.
|
| 432 |
-
"""
|
| 433 |
-
_assert_all_fsdp_modules(modules)
|
| 434 |
-
self._get_fsdp_state()._states_to_forward_prefetch = [
|
| 435 |
-
module._get_fsdp_state() for module in modules
|
| 436 |
-
]
|
| 437 |
-
|
| 438 |
-
def set_modules_to_backward_prefetch(self, modules: list[FSDPModule]) -> None:
|
| 439 |
-
"""
|
| 440 |
-
Sets the FSDP modules for which this FSDP module should explicitly
|
| 441 |
-
prefetch all-gathers in backward. This overrides the default backward
|
| 442 |
-
pretching implementation that prefetches the next FSDP module based on
|
| 443 |
-
the reverse post-forward order.
|
| 444 |
-
|
| 445 |
-
Passing a singleton list containing the previous FSDP module gives the
|
| 446 |
-
same all-gather overlap behavior as the default overlap behavior.
|
| 447 |
-
Passing a list with at least length two is required for more aggressive
|
| 448 |
-
overlap and will use more reserved memory.
|
| 449 |
-
|
| 450 |
-
Args:
|
| 451 |
-
modules (List[FSDPModule]): FSDP modules to prefetch.
|
| 452 |
-
"""
|
| 453 |
-
_assert_all_fsdp_modules(modules)
|
| 454 |
-
self._get_fsdp_state()._states_to_backward_prefetch = [
|
| 455 |
-
module._get_fsdp_state() for module in modules
|
| 456 |
-
]
|
| 457 |
-
|
| 458 |
-
def set_all_reduce_hook(
|
| 459 |
-
self,
|
| 460 |
-
hook: Callable[[torch.Tensor], None],
|
| 461 |
-
*,
|
| 462 |
-
stream: Optional[torch.cuda.Stream] = None,
|
| 463 |
-
):
|
| 464 |
-
"""
|
| 465 |
-
Args:
|
| 466 |
-
hook (Callable[[torch.Tensor], None]): User-defined all-reduce hook
|
| 467 |
-
with expected signature ``hook(reduce_output: torch.Tensor) -> None``
|
| 468 |
-
where ``reduce_output`` is the reduce-scatter output if only
|
| 469 |
-
using FSDP or the all-reduce output if using native HSDP.
|
| 470 |
-
stream (Optional[torch.cuda.Stream]): Stream to run the all-reduce
|
| 471 |
-
hook in. This should only be set if not using native HSDP. If
|
| 472 |
-
using native HSDP, the hook will run in the internally defined
|
| 473 |
-
all-reduce stream used by the native HSDP all-reduce.
|
| 474 |
-
"""
|
| 475 |
-
state = self._get_fsdp_state()
|
| 476 |
-
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 477 |
-
fsdp_param_group._all_reduce_hook = hook
|
| 478 |
-
if stream is not None:
|
| 479 |
-
if fsdp_param_group._is_hsdp:
|
| 480 |
-
raise ValueError("stream cannot be set when using native HSDP")
|
| 481 |
-
fsdp_param_group._all_reduce_hook_stream = stream
|
| 482 |
-
|
| 483 |
-
def set_post_optim_event(self, event: torch.Event) -> None:
|
| 484 |
-
"""
|
| 485 |
-
Sets a post-optimizer-step event for the root FSDP module to wait the
|
| 486 |
-
all-gather streams on.
|
| 487 |
-
|
| 488 |
-
By default, the root FSDP module waits the all-gather streams on the
|
| 489 |
-
current stream to ensure that the optimizer step has finished before
|
| 490 |
-
all-gathering. However, this may introduce false dependencies if
|
| 491 |
-
there is unrelated computation after the optimizer step. This API
|
| 492 |
-
allows the user to provide their own event to wait on. After the root
|
| 493 |
-
waits on the event, the event is discarded, so this API should be
|
| 494 |
-
called with a new event each iteration.
|
| 495 |
-
|
| 496 |
-
Args:
|
| 497 |
-
event (torch.Event): Event recorded after the optimizer step
|
| 498 |
-
to wait all-gather streams on.
|
| 499 |
-
"""
|
| 500 |
-
self._get_fsdp_state()._state_ctx.post_optim_event = event
|
| 501 |
-
|
| 502 |
-
@deprecated("Use `set_gradient_divide_factor` instead")
|
| 503 |
-
def set_reduce_scatter_divide_factor(self, factor: float) -> None:
|
| 504 |
-
"""Use :py:meth:`set_gradient_divide_factor` instead"""
|
| 505 |
-
self.set_gradient_divide_factor(factor)
|
| 506 |
-
|
| 507 |
-
def set_gradient_divide_factor(self, factor: float) -> None:
|
| 508 |
-
"""
|
| 509 |
-
Sets a custom divide factor for the gradient reduction. This might use
|
| 510 |
-
a custom reduce op using NCCL's PreMulSum, which allows multiplying by
|
| 511 |
-
the factor before reduction.
|
| 512 |
-
|
| 513 |
-
Args:
|
| 514 |
-
factor (float): Custom divide factor.
|
| 515 |
-
"""
|
| 516 |
-
state = self._get_fsdp_state()
|
| 517 |
-
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 518 |
-
fsdp_param_group.gradient_divide_factor = factor
|
| 519 |
-
|
| 520 |
-
def set_force_sum_reduction_for_comms(self, enable: bool) -> None:
|
| 521 |
-
"""
|
| 522 |
-
Sets whether to require the low-level collective communication
|
| 523 |
-
primitives to exclusively use "sum"-type reductions, even if it comes
|
| 524 |
-
at the cost of separate additional pre- or post-scaling operations.
|
| 525 |
-
This is needed for example because NCCL currently supports zero-copy
|
| 526 |
-
transfers only for this kind of collectives.
|
| 527 |
-
|
| 528 |
-
NB: for MTIA devices, this is always implicitly enabled.
|
| 529 |
-
|
| 530 |
-
NB: if `set_all_reduce_hook` is used under FSDP setup, the caller needs
|
| 531 |
-
to ensure the custom all-reduce across FSDP units follow this strategy
|
| 532 |
-
as well, as FSDP can no longer automatically handle that.
|
| 533 |
-
|
| 534 |
-
Args:
|
| 535 |
-
enable (bool): Whether to only ever use ReduceOp.SUM for comms.
|
| 536 |
-
"""
|
| 537 |
-
state = self._get_fsdp_state()
|
| 538 |
-
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 539 |
-
fsdp_param_group.force_sum_reduction_for_comms = enable
|
| 540 |
-
|
| 541 |
-
def set_unshard_in_backward(self, unshard_in_backward: bool) -> None:
|
| 542 |
-
"""
|
| 543 |
-
Sets whether the FSDP module's parameters need to be unsharded in
|
| 544 |
-
backward. This can be used in expert cases when the user knows that all
|
| 545 |
-
parameters in this FSDP module's parameter group are not needed for
|
| 546 |
-
backward computation (e.g. embedding).
|
| 547 |
-
"""
|
| 548 |
-
state = self._get_fsdp_state()
|
| 549 |
-
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 550 |
-
fsdp_param_group.unshard_in_backward = unshard_in_backward
|
| 551 |
-
|
| 552 |
-
def set_allocate_memory_from_process_group_for_comm(self, enable: bool) -> None:
|
| 553 |
-
"""
|
| 554 |
-
Sets whether the temporary staging buffers used to send and receive data
|
| 555 |
-
over collective communications should be allocated using the custom
|
| 556 |
-
optimized allocator provided by the ProcessGroup itself (if any). This
|
| 557 |
-
might allow the ProcessGroup to be more efficient. For example, when
|
| 558 |
-
using NCCL, this enables it to leverage zero-copy transfers over SHARP
|
| 559 |
-
(for NVLink and/or InfiniBand).
|
| 560 |
-
|
| 561 |
-
Args:
|
| 562 |
-
enable (bool): Whether to turn on ProcessGroup allocation.
|
| 563 |
-
"""
|
| 564 |
-
state = self._get_fsdp_state()
|
| 565 |
-
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 566 |
-
fsdp_param_group.allocate_memory_from_process_group = enable
|
| 567 |
-
|
| 568 |
-
def _set_unshard_async_op(self, async_op: bool):
|
| 569 |
-
"""
|
| 570 |
-
Sets whether to use ``async_op=True`` or ``False`` for the pre-forward
|
| 571 |
-
and pre-backward unshard op. This defaults to ``False`` but can be set
|
| 572 |
-
to ``True`` with this method.
|
| 573 |
-
|
| 574 |
-
Setting this to ``True`` allows the all-gather allocations to happen in
|
| 575 |
-
the default stream, avoiding inter-stream memory fragmentation.
|
| 576 |
-
However, you must use explicit prefetching (e.g. via :meth:`unshard`)
|
| 577 |
-
in forward to still get overlap, and the pre-all-gather ops like dtype
|
| 578 |
-
casting and copy-in will not overlap with compute.
|
| 579 |
-
"""
|
| 580 |
-
self_module = cast(nn.Module, self)
|
| 581 |
-
for module in self_module.modules():
|
| 582 |
-
if isinstance(module, FSDPModule):
|
| 583 |
-
state = module._get_fsdp_state()
|
| 584 |
-
if fsdp_param_group := state._fsdp_param_group:
|
| 585 |
-
fsdp_param_group.unshard_async_op = async_op
|
| 586 |
-
|
| 587 |
-
def _get_fsdp_state(self) -> FSDPState:
|
| 588 |
-
if (state := _get_module_fsdp_state(cast(nn.Module, self))) is None:
|
| 589 |
-
raise AssertionError(f"No FSDP state found on {self}")
|
| 590 |
-
return state
|
| 591 |
-
|
| 592 |
-
def _apply(self, *args: Any, **kwargs: Any) -> Any:
|
| 593 |
-
# Reshard to ensure that sharded parameters are registered
|
| 594 |
-
self.reshard()
|
| 595 |
-
ret = super()._apply(*args, **kwargs) # type: ignore[misc]
|
| 596 |
-
state = self._get_fsdp_state()
|
| 597 |
-
if not (fsdp_param_group := state._fsdp_param_group):
|
| 598 |
-
return ret
|
| 599 |
-
# TODO: Remove this padding logic once DTensor pads the local tensor:
|
| 600 |
-
# https://github.com/pytorch/pytorch/issues/113045
|
| 601 |
-
with torch.no_grad():
|
| 602 |
-
for fsdp_param in fsdp_param_group.fsdp_params:
|
| 603 |
-
fsdp_param.reset_sharded_param()
|
| 604 |
-
return ret
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
class UnshardHandle:
|
| 608 |
-
"""
|
| 609 |
-
A handle to wait on a :meth:`FSDPModule.unshard` op.
|
| 610 |
-
"""
|
| 611 |
-
|
| 612 |
-
def wait(self) -> None:
|
| 613 |
-
"""
|
| 614 |
-
Waits on the unshard op. This ensures that the current stream can use
|
| 615 |
-
the unsharded parameters, which are now registered to the module.
|
| 616 |
-
"""
|
| 617 |
-
return
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
class _UnshardHandleImpl(UnshardHandle):
|
| 621 |
-
def __init__(self, fsdp_param_group: Optional[FSDPParamGroup]):
|
| 622 |
-
self._fsdp_param_group = fsdp_param_group
|
| 623 |
-
|
| 624 |
-
def wait(self):
|
| 625 |
-
if self._fsdp_param_group is not None:
|
| 626 |
-
self._fsdp_param_group.wait_for_unshard()
|
| 627 |
-
# Avoid keeping a reference
|
| 628 |
-
self._fsdp_param_group = None
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
def register_fsdp_forward_method(module: nn.Module, method_name: str) -> None:
|
| 632 |
-
"""
|
| 633 |
-
Registers a method on ``module`` to be considered a forward method for
|
| 634 |
-
FSDP.
|
| 635 |
-
|
| 636 |
-
FSDP all-gathers parameters pre-forward and optionally frees parameters
|
| 637 |
-
post-forward (depending on ``reshard_after_forward``). FSDP only knows to
|
| 638 |
-
do this for :meth:`nn.Module.forward` by default. This function patches a
|
| 639 |
-
user-specified method to run the pre/post-forward hooks before/after the
|
| 640 |
-
method, respectively. If ``module`` is not an :class:`FSDPModule`, then
|
| 641 |
-
this is a no-op.
|
| 642 |
-
|
| 643 |
-
Args:
|
| 644 |
-
module (nn.Module): Module to register the forward method on.
|
| 645 |
-
method_name (str): Name of the forward method.
|
| 646 |
-
"""
|
| 647 |
-
if not isinstance(module, FSDPModule):
|
| 648 |
-
# Make no-op to allow including both when using/not using FSDP
|
| 649 |
-
return
|
| 650 |
-
if not hasattr(module, method_name):
|
| 651 |
-
raise ValueError(f"{type(module)} does not have a method {method_name}")
|
| 652 |
-
orig_method = getattr(module, method_name)
|
| 653 |
-
|
| 654 |
-
@functools.wraps(orig_method)
|
| 655 |
-
def wrapped_method(self, *args, **kwargs):
|
| 656 |
-
fsdp_state = self._get_fsdp_state()
|
| 657 |
-
args, kwargs = fsdp_state._pre_forward(self, args, kwargs)
|
| 658 |
-
out = orig_method(*args, **kwargs)
|
| 659 |
-
return fsdp_state._post_forward(self, args, out)
|
| 660 |
-
|
| 661 |
-
# Use `__get__` to make `wrapped_method` an instance method
|
| 662 |
-
setattr(
|
| 663 |
-
module,
|
| 664 |
-
method_name,
|
| 665 |
-
wrapped_method.__get__(module, type(module)), # type:ignore[attr-defined]
|
| 666 |
-
)
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
def _assert_all_fsdp_modules(modules: Iterable[Any]) -> None:
|
| 670 |
-
for module in modules:
|
| 671 |
-
if not isinstance(module, FSDPModule):
|
| 672 |
-
raise ValueError(f"Expects FSDPModule but got {type(module)}: {module}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|