DidiZhu commited on
Commit
4f07c67
·
verified ·
1 Parent(s): 669170a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
_fsdp_api.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import torch
6
+
7
+
8
+ @dataclass(frozen=True)
9
+ class MixedPrecisionPolicy:
10
+ """
11
+ This configures FSDP's mixed precision. Unlike autocast, this applies mixed
12
+ precision at the module level, not op level, which means low-precision
13
+ activations are saved for backward and high-to-low-precision casts are
14
+ incurred only at module boundaries.
15
+
16
+ FSDP works well with module-level mixed precision since it keeps the
17
+ high-precision sharded parameters in memory anyway. In other words, FSDP
18
+ does not require any extra memory to keep a high-precision copy of the
19
+ parameters for the optimizer step.
20
+
21
+ Attributes:
22
+ param_dtype (Optional[torch.dtype]): This specifies the dtype for
23
+ the unsharded parameter and hence the dtype for forward/backward
24
+ computation and the parameter all-gather. If this is ``None``, then
25
+ the unsharded parameter uses the original dtype. The optimizer step
26
+ uses the sharded parameter in the original dtype. (Default:
27
+ ``None``)
28
+ reduce_dtype (Optional[torch.dtype]): This specifies the dtype for
29
+ gradient reduction (i.e. reduce-scatter or all-reduce). If this is
30
+ ``None`` but ``param_dtype`` is not ``None``, then the reduction
31
+ uses the compute dtype. This can be used to run gradient reduction
32
+ in full precision while using low precision for compute. If also
33
+ gradient reduction is disabled via :meth:`set_requires_gradient_sync`,
34
+ then FSDP will accumulate gradients using ``reduce_dtype``.
35
+ (Default: ``None``)
36
+ output_dtype (Optional[torch.dtype]): This specifies the dtype for
37
+ casting floating-point forward outputs. This can be used to
38
+ help implement cases where different modules have different mixed
39
+ precision policies. (Default: ``None``)
40
+ cast_forward_inputs (bool): This specifies whether FSDP should cast the
41
+ forward's floating-point input tensors to ``param_dtype`` or not.
42
+ """
43
+
44
+ param_dtype: Optional[torch.dtype] = None
45
+ reduce_dtype: Optional[torch.dtype] = None
46
+ output_dtype: Optional[torch.dtype] = None
47
+ cast_forward_inputs: bool = True
48
+
49
+
50
+ @dataclass
51
+ class OffloadPolicy:
52
+ """
53
+ This base class represents the policy of no offloading and is only used as
54
+ the default value for the ``offload_policy`` arg.
55
+ """
56
+
57
+
58
+ @dataclass
59
+ class CPUOffloadPolicy(OffloadPolicy):
60
+ """
61
+ This offload policy offloads parameters, gradients, and optimizer states to
62
+ CPU. Sharded parameters are copied host-to-device before all-gather. The
63
+ all-gathered parameters are freed according to ``reshard_after_forward``.
64
+ Sharded gradients are copied device-to-host in backward, and the optimizer
65
+ step runs on CPU with CPU optimizer states.
66
+
67
+ Attributes:
68
+ pin_memory (bool): Whether to pin sharded parameter and gradient
69
+ memory. Pinning memory allows both more efficient H2D/D2H copies
70
+ and for the copies to overlap with compute. However, the pinned
71
+ memory cannot be used by other processes. Set this to ``False`` if
72
+ you have insufficient CPU memory. (Default: ``True``)
73
+ """
74
+
75
+ pin_memory: bool = True
_fsdp_collectives.py ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain
2
+ from typing import Callable, cast, NamedTuple, Optional, Union
3
+
4
+ import torch
5
+ import torch.distributed as dist
6
+ from torch.distributed.device_mesh import _get_device_handle
7
+ from torch.distributed.distributed_c10d import _resolve_process_group, ReduceOp
8
+ from torch.distributed.tensor import DTensor
9
+
10
+ from ._fsdp_common import (
11
+ _get_dim0_padded_size,
12
+ _raise_assert_with_print,
13
+ _to_dtype_if_needed,
14
+ compiled_autograd_enabled,
15
+ )
16
+ from ._fsdp_param import FSDPParam, ShardedState
17
+
18
+
19
+ class AllGatherResult(NamedTuple):
20
+ all_gather_output: torch.Tensor
21
+ all_gather_event: Optional[torch.Event]
22
+ all_gather_work: Optional[dist.distributed_c10d.Work]
23
+ # For each parameter, the all-gather input dtype for each input
24
+ param_all_gather_input_dtypes: list[list[torch.dtype]]
25
+ # For each parameter, the all-gather input numel for each input
26
+ param_all_gather_input_numels: list[list[int]]
27
+ # 1D flattened version of `param_all_gather_input_numels` saved to avoid
28
+ # CPU overhead from recomputing
29
+ all_gather_input_split_sizes: list[int]
30
+
31
+
32
+ def allocate_memory(
33
+ size: int,
34
+ dtype: torch.dtype,
35
+ device: torch.device,
36
+ group: dist.ProcessGroup,
37
+ from_process_group: bool,
38
+ ) -> torch.Tensor:
39
+ if from_process_group:
40
+ backend = group._get_backend(device)
41
+ if backend.supports_tensor_alloc(device):
42
+ return backend.allocate_tensor(size, dtype=dtype, device=device)
43
+ return torch.empty((size,), dtype=dtype, device=device)
44
+
45
+
46
+ lib = torch.library.Library("fsdp", "FRAGMENT") # noqa: TOR901
47
+
48
+ lib.define(
49
+ """
50
+ all_gather_copy_in(
51
+ Tensor[] all_gather_inputs,
52
+ SymInt[] inp_split_sizes,
53
+ SymInt all_gather_input_numel,
54
+ SymInt world_size,
55
+ SymInt rank,
56
+ ScalarType dtype,
57
+ Device device,
58
+ str group_name,
59
+ bool allocate_memory_from_process_group
60
+ ) -> (Tensor, Tensor)
61
+ """
62
+ )
63
+
64
+
65
+ @torch.library.impl(lib, "all_gather_copy_in", "Meta")
66
+ def all_gather_copy_in_meta(
67
+ all_gather_inputs: list[torch.Tensor],
68
+ inp_split_sizes: list[int],
69
+ all_gather_input_numel: int,
70
+ world_size: int,
71
+ rank: int,
72
+ dtype: torch.dtype,
73
+ device: torch.device,
74
+ group_name: str,
75
+ allocate_memory_from_process_group: bool,
76
+ ) -> tuple[torch.Tensor, torch.Tensor]:
77
+ all_gather_output = torch.empty(
78
+ (all_gather_input_numel * world_size,), dtype=dtype, device="meta"
79
+ )
80
+ all_gather_input = all_gather_output.narrow(
81
+ 0, all_gather_input_numel * rank, all_gather_input_numel
82
+ )
83
+ return all_gather_input, all_gather_output
84
+
85
+
86
+ @torch.library.impl(lib, "all_gather_copy_in", "CUDA")
87
+ @torch.library.impl(lib, "all_gather_copy_in", "XPU")
88
+ @torch.library.impl(lib, "all_gather_copy_in", "HPU")
89
+ @torch.library.impl(lib, "all_gather_copy_in", "CPU")
90
+ @torch.library.impl(lib, "all_gather_copy_in", "MTIA")
91
+ @torch.library.impl(lib, "all_gather_copy_in", "PrivateUse1")
92
+ def all_gather_copy_in_cuda(
93
+ all_gather_inputs: list[torch.Tensor],
94
+ inp_split_sizes: list[int],
95
+ all_gather_input_numel: int,
96
+ world_size: int,
97
+ rank: int,
98
+ dtype: torch.dtype,
99
+ device: torch.device,
100
+ group_name: str,
101
+ allocate_memory_from_process_group: bool,
102
+ ) -> tuple[torch.Tensor, torch.Tensor]:
103
+ all_gather_output = allocate_memory(
104
+ all_gather_input_numel * world_size,
105
+ dtype=dtype,
106
+ device=device,
107
+ group=_resolve_process_group(group_name),
108
+ from_process_group=allocate_memory_from_process_group,
109
+ )
110
+ all_gather_input = all_gather_output.narrow(
111
+ 0, all_gather_input_numel * rank, all_gather_input_numel
112
+ )
113
+ foreach_copy_dsts = torch.split(all_gather_input, inp_split_sizes)
114
+ with torch.no_grad():
115
+ torch._foreach_copy_(foreach_copy_dsts, all_gather_inputs)
116
+ return all_gather_input, all_gather_output
117
+
118
+
119
+ lib.define(
120
+ "split_with_sizes_copy(Tensor all_gather_output, SymInt[] all_gather_input_split_sizes, int dim=0, *, Tensor(a!)[] out) -> ()"
121
+ )
122
+
123
+
124
+ @torch.library.impl(lib, "split_with_sizes_copy", "Meta")
125
+ @torch.library.impl(lib, "split_with_sizes_copy", "CUDA")
126
+ @torch.library.impl(lib, "split_with_sizes_copy", "XPU")
127
+ @torch.library.impl(lib, "split_with_sizes_copy", "HPU")
128
+ @torch.library.impl(lib, "split_with_sizes_copy", "CPU")
129
+ @torch.library.impl(lib, "split_with_sizes_copy", "MTIA")
130
+ @torch.library.impl(lib, "split_with_sizes_copy", "PrivateUse1")
131
+ def split_with_sizes_copy(
132
+ all_gather_output: torch.Tensor,
133
+ all_gather_input_split_sizes: list[int],
134
+ dim: int,
135
+ out: list[torch.Tensor],
136
+ ) -> None:
137
+ torch.split_with_sizes_copy(
138
+ all_gather_output, all_gather_input_split_sizes, dim=dim, out=out
139
+ )
140
+
141
+
142
+ lib.define(
143
+ "chunk_cat(Tensor[] tensors, int dim, int num_chunks, *, Tensor(a!) out) -> ()"
144
+ )
145
+
146
+
147
+ @torch.library.impl(lib, "chunk_cat", "Meta")
148
+ @torch.library.impl(lib, "chunk_cat", "CUDA")
149
+ @torch.library.impl(lib, "chunk_cat", "XPU")
150
+ @torch.library.impl(lib, "chunk_cat", "HPU")
151
+ @torch.library.impl(lib, "chunk_cat", "CPU")
152
+ @torch.library.impl(lib, "chunk_cat", "MTIA")
153
+ @torch.library.impl(lib, "chunk_cat", "PrivateUse1")
154
+ def chunk_cat(
155
+ tensors: list[torch.Tensor],
156
+ dim: int,
157
+ num_chunks: int,
158
+ out: torch.Tensor,
159
+ ) -> None:
160
+ torch._chunk_cat(tensors, dim, num_chunks, out=out)
161
+
162
+
163
+ @torch.no_grad()
164
+ def foreach_all_gather(
165
+ fsdp_params: list[FSDPParam],
166
+ group: dist.ProcessGroup,
167
+ async_op: bool,
168
+ all_gather_copy_in_stream: torch.Stream,
169
+ all_gather_stream: torch.Stream,
170
+ device: torch.device,
171
+ allocate_memory_from_process_group: bool = False,
172
+ ) -> Optional[AllGatherResult]:
173
+ world_size, rank = group.size(), group.rank()
174
+ device_handle = _get_device_handle(device.type)
175
+ with device_handle.stream(all_gather_copy_in_stream):
176
+ param_all_gather_inputs = _get_param_all_gather_inputs(fsdp_params)
177
+ (
178
+ param_all_gather_input_dtypes,
179
+ param_all_gather_input_numels,
180
+ dtype,
181
+ ) = _get_all_gather_input_metadatas(param_all_gather_inputs)
182
+ if dtype == torch.uint8:
183
+ all_gather_inputs = [
184
+ t.view(torch.uint8) for ts in param_all_gather_inputs for t in ts
185
+ ]
186
+ else:
187
+ all_gather_inputs = [*chain.from_iterable(param_all_gather_inputs)]
188
+ inp_split_sizes = [t.numel() for t in all_gather_inputs]
189
+ all_gather_input_numel = sum(inp_split_sizes)
190
+ all_gather_input, all_gather_output = torch.ops.fsdp.all_gather_copy_in(
191
+ all_gather_inputs,
192
+ inp_split_sizes,
193
+ all_gather_input_numel,
194
+ world_size,
195
+ rank,
196
+ dtype,
197
+ device,
198
+ group.group_name,
199
+ allocate_memory_from_process_group,
200
+ )
201
+ del param_all_gather_inputs
202
+ all_gather_stream.wait_stream(all_gather_copy_in_stream)
203
+ with device_handle.stream(all_gather_stream):
204
+ all_gather_work = dist.all_gather_into_tensor(
205
+ output_tensor=all_gather_output,
206
+ input_tensor=all_gather_input,
207
+ group=group,
208
+ async_op=async_op,
209
+ )
210
+ all_gather_event = all_gather_stream.record_event()
211
+ return AllGatherResult(
212
+ all_gather_output,
213
+ all_gather_event,
214
+ all_gather_work,
215
+ param_all_gather_input_dtypes,
216
+ param_all_gather_input_numels,
217
+ inp_split_sizes,
218
+ )
219
+
220
+
221
+ @torch.no_grad()
222
+ def _get_param_all_gather_inputs(
223
+ fsdp_params: list[FSDPParam],
224
+ ) -> list[list[torch.Tensor]]:
225
+ if compiled_autograd_enabled():
226
+ return [fsdp_param.all_gather_inputs for fsdp_param in fsdp_params]
227
+
228
+ # Intentionally try to run a fast-path that bypasses abstractions for the
229
+ # common FSDP case of bf16/fp32 mixed precision in order to use foreach
230
+ # copy for lower CPU overhead and more efficient copying in eager
231
+ def use_foreach_copy(fsdp_param: FSDPParam) -> bool:
232
+ return (
233
+ fsdp_param.param_dtype is not None
234
+ and not fsdp_param.offload_to_cpu
235
+ and not hasattr(fsdp_param._sharded_local_tensor, "fsdp_pre_all_gather")
236
+ )
237
+
238
+ param_all_gather_inputs: list[list[torch.Tensor]] = [[] for _ in fsdp_params]
239
+ foreach_copy_indices: list[int] = []
240
+ foreach_copy_inputs: list[torch.Tensor] = []
241
+ foreach_copy_input_numels: list[int] = []
242
+
243
+ # 1st pass: for foreach-copy parameters, get inputs and metadata for the
244
+ # foreach copy, and for the others, actually get their all-gather inputs
245
+ for i, fsdp_param in enumerate(fsdp_params):
246
+ if use_foreach_copy(fsdp_param):
247
+ foreach_copy_indices.append(i)
248
+ all_gather_input = (
249
+ fsdp_param._sharded_param_data
250
+ if fsdp_param.sharded_state == ShardedState.SHARDED
251
+ else cast(torch.Tensor, fsdp_param._sharded_post_forward_param_data)
252
+ )
253
+ foreach_copy_inputs.append(all_gather_input)
254
+ foreach_copy_input_numels.append(all_gather_input.numel())
255
+ else:
256
+ param_all_gather_inputs[i] = fsdp_param.all_gather_inputs
257
+
258
+ # 2nd pass: use foreach copy to compute the remaining all-gather inputs
259
+ if foreach_copy_inputs:
260
+ fsdp_param_0 = fsdp_params[foreach_copy_indices[0]]
261
+ param_dtype, device = fsdp_param_0.param_dtype, fsdp_param_0.device
262
+ flat_foreach_copy_input = torch.empty(
263
+ (sum(foreach_copy_input_numels),), device=device, dtype=param_dtype
264
+ )
265
+ splits = torch.split(flat_foreach_copy_input, foreach_copy_input_numels)
266
+ torch._foreach_copy_(splits, foreach_copy_inputs)
267
+ for i, split in zip(foreach_copy_indices, splits):
268
+ param_all_gather_inputs[i] = [split]
269
+
270
+ return param_all_gather_inputs
271
+
272
+
273
+ @torch.no_grad()
274
+ def foreach_all_gather_copy_out(
275
+ all_gather_result: AllGatherResult,
276
+ fsdp_params: list[FSDPParam],
277
+ group: dist.ProcessGroup,
278
+ ) -> None:
279
+ (
280
+ all_gather_output,
281
+ all_gather_event,
282
+ all_gather_work,
283
+ param_all_gather_input_dtypes,
284
+ param_all_gather_input_numels,
285
+ all_gather_input_split_sizes,
286
+ ) = all_gather_result
287
+ _dtype, device = all_gather_output.dtype, all_gather_output.device
288
+ device_handle = _get_device_handle(device.type)
289
+ if all_gather_event is not None: # sync op
290
+ device_handle.current_stream().wait_event(all_gather_event)
291
+ if isinstance(all_gather_work, dist.distributed_c10d.Work): # async op
292
+ all_gather_work.wait()
293
+ world_size, device = group.size(), all_gather_output.device
294
+
295
+ split_with_sizes_out: list[torch.Tensor] = []
296
+ shard_i_copy_infos: list[tuple[FSDPParam, list[torch.Tensor]]] = []
297
+ for all_gather_input_numels, all_gather_input_dtypes, fsdp_param in zip(
298
+ param_all_gather_input_numels, param_all_gather_input_dtypes, fsdp_params
299
+ ):
300
+ # NOTE: Under compile, make sure we always recreate all_gather_outputs
301
+ # per AllGather. See [Note: Invariants for torch.compile Traceable FSDP2].
302
+ force_recreate = compiled_autograd_enabled()
303
+ fsdp_param.init_all_gather_outputs(
304
+ all_gather_input_numels,
305
+ all_gather_input_dtypes,
306
+ world_size,
307
+ device,
308
+ force_recreate=force_recreate,
309
+ )
310
+ if not force_recreate:
311
+ fsdp_param.alloc_all_gather_outputs()
312
+ param_all_gather_outputs = fsdp_param.all_gather_outputs
313
+ if fsdp_param.fsdp_placement.dim != 0:
314
+ # Copy to a temporary and then chunk-cat into the final all-gather
315
+ # output tensors
316
+ param_all_gather_outputs = [
317
+ torch.empty_like(t) for t in param_all_gather_outputs
318
+ ]
319
+ shard_i_copy_infos.append((fsdp_param, param_all_gather_outputs))
320
+ split_with_sizes_out.extend(param_all_gather_outputs)
321
+
322
+ all_gather_output = all_gather_output.view(world_size, -1)
323
+ if all_gather_output.dtype == torch.uint8:
324
+ out = [t.view(world_size, -1).view(torch.uint8) for t in split_with_sizes_out]
325
+ else:
326
+ out = [t.view(world_size, -1) for t in split_with_sizes_out]
327
+
328
+ # only avoid VC bump if we are not in inference mode
329
+ if torch._dynamo.is_compiling():
330
+ # For torch.compile, we turn off inference_mode for fake tensor
331
+ # propagation, and therefore graph break on is_inference. For `compile`,
332
+ # we don't care about VCs, so just skip the optimization.
333
+ non_inference_outs = []
334
+ else:
335
+ non_inference_outs = [o for o in out if not o.is_inference()]
336
+
337
+ if len(non_inference_outs) > 0:
338
+ with torch.autograd._unsafe_preserve_version_counter(tuple(non_inference_outs)):
339
+ torch.ops.fsdp.split_with_sizes_copy(
340
+ all_gather_output, all_gather_input_split_sizes, dim=1, out=out
341
+ )
342
+ else:
343
+ torch.ops.fsdp.split_with_sizes_copy(
344
+ all_gather_output, all_gather_input_split_sizes, dim=1, out=out
345
+ )
346
+
347
+ for fsdp_param, param_all_gather_outputs in shard_i_copy_infos:
348
+ # Chunk-cat from the temporary to the final all-gather output tensors
349
+ shard_dim = fsdp_param.fsdp_placement.dim
350
+
351
+ with torch.autograd._unsafe_preserve_version_counter(
352
+ tuple(fsdp_param.all_gather_outputs)
353
+ ):
354
+ for param_all_gather_output, target_all_gather_output in zip(
355
+ param_all_gather_outputs, fsdp_param.all_gather_outputs
356
+ ):
357
+ padded_sharded_size = (
358
+ fsdp_param.padded_sharded_param_size
359
+ if fsdp_param.sharded_state == ShardedState.SHARDED
360
+ else cast(
361
+ torch.Tensor, fsdp_param._sharded_post_forward_param_data
362
+ ).size()
363
+ )
364
+ pre_param_size = list(padded_sharded_size)
365
+ pre_param_size[0] *= world_size
366
+ chunks = torch.chunk(
367
+ param_all_gather_output.view(pre_param_size), world_size, dim=0
368
+ )
369
+ post_param_size = list(padded_sharded_size)
370
+ post_param_size[shard_dim] *= world_size
371
+ cat_out = target_all_gather_output.view(post_param_size)
372
+ torch.cat(chunks, dim=shard_dim, out=cat_out)
373
+
374
+
375
+ @torch.no_grad()
376
+ def foreach_reduce(
377
+ fsdp_params: list[FSDPParam],
378
+ unsharded_grads: list[torch.Tensor],
379
+ reduce_scatter_group: dist.ProcessGroup,
380
+ reduce_scatter_stream: torch.Stream,
381
+ orig_dtype: Optional[torch.dtype],
382
+ reduce_dtype: Optional[torch.dtype],
383
+ device: torch.device,
384
+ gradient_divide_factor: Optional[float],
385
+ all_reduce_group: Optional[dist.ProcessGroup], # not `None` iff HSDP
386
+ all_reduce_stream: torch.Stream,
387
+ all_reduce_grads: bool,
388
+ partial_reduce_output: Optional[torch.Tensor], # only used for HSDP
389
+ all_reduce_hook: Optional[Callable[[torch.Tensor], None]],
390
+ allocate_memory_from_process_group: bool = False,
391
+ force_sum_reduction_for_comms: bool = False,
392
+ ) -> tuple[
393
+ torch.Tensor,
394
+ torch.Event,
395
+ torch.Event,
396
+ Optional[torch.Tensor],
397
+ Optional[torch.Event],
398
+ Optional[torch.Tensor],
399
+ ]:
400
+ """
401
+ ``unsharded_grads`` owns the references to the gradients computed by
402
+ autograd, so clearing the list frees the gradients.
403
+ """
404
+ grad_dtypes = {grad.dtype for grad in unsharded_grads}
405
+ if len(grad_dtypes) != 1:
406
+ # Check this at runtime since it could be a real runtime error if e.g.
407
+ # fp8 weights do not produce the correct higher precision gradients
408
+ _raise_assert_with_print(
409
+ f"FSDP reduce-scatter expects uniform gradient dtype but got {grad_dtypes}"
410
+ )
411
+ grad_dtype = unsharded_grads[0].dtype
412
+ reduce_dtype = reduce_dtype or grad_dtype
413
+ (predivide_factor, postdivide_factor, reduce_scatter_op, all_reduce_op) = (
414
+ _get_gradient_divide_factors(
415
+ reduce_scatter_group,
416
+ all_reduce_group,
417
+ reduce_dtype,
418
+ device.type,
419
+ gradient_divide_factor,
420
+ force_sum_reduction_for_comms,
421
+ )
422
+ )
423
+ world_size = reduce_scatter_group.size()
424
+ for i, (fsdp_param, unsharded_grad) in enumerate(zip(fsdp_params, unsharded_grads)):
425
+ if (shard_dim := fsdp_param.fsdp_placement.dim) == 0:
426
+ continue
427
+ assert unsharded_grad.size(shard_dim) % world_size == 0, (
428
+ f"Shard({shard_dim}) requires even sharding: {unsharded_grad.size()=} {world_size=}"
429
+ )
430
+ chunks = torch.chunk(unsharded_grad, world_size, dim=shard_dim)
431
+ unsharded_grads[i] = torch.cat(chunks, dim=0)
432
+ padded_unsharded_sizes = tuple(
433
+ _get_dim0_padded_size(grad.size(), world_size) for grad in unsharded_grads
434
+ )
435
+ reduce_scatter_input_numel = sum(s.numel() for s in padded_unsharded_sizes)
436
+ reduce_scatter_output_numel = reduce_scatter_input_numel // world_size
437
+ reduce_scatter_input = allocate_memory(
438
+ reduce_scatter_input_numel,
439
+ dtype=reduce_dtype,
440
+ device=device,
441
+ group=reduce_scatter_group,
442
+ from_process_group=allocate_memory_from_process_group,
443
+ )
444
+ device_handle = _get_device_handle(device.type)
445
+ foreach_reduce_scatter_copy_in(unsharded_grads, reduce_scatter_input, world_size)
446
+ current_stream = device_handle.current_stream()
447
+ # Only after the copy-in finishes can we free the gradients
448
+ unsharded_grads.clear()
449
+ reduce_scatter_stream.wait_stream(current_stream)
450
+ all_reduce_input = None
451
+ all_reduce_event = None
452
+ with device_handle.stream(reduce_scatter_stream):
453
+ reduce_output = allocate_memory(
454
+ reduce_scatter_output_numel,
455
+ dtype=reduce_dtype,
456
+ device=device,
457
+ group=reduce_scatter_group,
458
+ from_process_group=allocate_memory_from_process_group,
459
+ )
460
+ _div_if_needed(reduce_scatter_input, predivide_factor)
461
+ dist.reduce_scatter_tensor(
462
+ output=reduce_output,
463
+ input=reduce_scatter_input,
464
+ group=reduce_scatter_group,
465
+ op=reduce_scatter_op,
466
+ )
467
+ reduce_scatter_event = reduce_scatter_stream.record_event()
468
+ post_reduce_stream = reduce_scatter_stream
469
+ if all_reduce_group is not None: # HSDP
470
+ # Accumulations must run in the reduce-scatter stream
471
+ if not all_reduce_grads:
472
+ if partial_reduce_output is not None:
473
+ partial_reduce_output += reduce_output
474
+ else:
475
+ partial_reduce_output = reduce_output
476
+ return (
477
+ reduce_scatter_input,
478
+ reduce_scatter_event,
479
+ post_reduce_stream.record_event(),
480
+ all_reduce_input,
481
+ all_reduce_event,
482
+ partial_reduce_output,
483
+ )
484
+ if partial_reduce_output is not None:
485
+ reduce_output += partial_reduce_output
486
+ post_reduce_stream = all_reduce_stream
487
+ all_reduce_stream.wait_stream(reduce_scatter_stream)
488
+ with device_handle.stream(all_reduce_stream):
489
+ dist.all_reduce(
490
+ reduce_output,
491
+ group=all_reduce_group,
492
+ op=all_reduce_op,
493
+ )
494
+ all_reduce_input = reduce_output
495
+ all_reduce_event = all_reduce_stream.record_event()
496
+ # -- END: ops in reduce_scatter stream
497
+
498
+ if all_reduce_hook is not None:
499
+ # Execute user-specified all reduce hook.
500
+ # If native HSDP is used, this is executed after the HSDP all reduce.
501
+ # If 1-d FSDP is used, this is executed post reduce-scatter.
502
+ post_reduce_stream = all_reduce_stream
503
+ all_reduce_stream.wait_stream(reduce_scatter_stream)
504
+ with device_handle.stream(all_reduce_stream):
505
+ all_reduce_hook(reduce_output)
506
+ # -- END: ops post reduce_scatter
507
+
508
+ with device_handle.stream(post_reduce_stream):
509
+ _div_if_needed(reduce_output, postdivide_factor)
510
+ reduce_output = _to_dtype_if_needed(reduce_output, orig_dtype)
511
+ # View out and accumulate sharded gradients
512
+ flat_grad_offset = 0 # [0, reduce_scatter_output_numel - 1]
513
+ for padded_unsharded_size, fsdp_param in zip(
514
+ padded_unsharded_sizes, fsdp_params
515
+ ):
516
+ # Assume even sharding for Shard(i), i > 0; otherwise would require
517
+ # copy-out for contiguous strides
518
+ new_sharded_grad = torch.as_strided(
519
+ reduce_output,
520
+ size=fsdp_param.sharded_size,
521
+ stride=fsdp_param.contiguous_sharded_stride,
522
+ storage_offset=flat_grad_offset,
523
+ )
524
+ to_accumulate_grad = fsdp_param.sharded_param.grad is not None
525
+ if fsdp_param.offload_to_cpu:
526
+ # Only overlap the D2H copy (copying to pinned memory) if not
527
+ # accumulating gradients since the CPU add kernel depends on
528
+ # the copy result and we cannot run the add as a callback
529
+ non_blocking = fsdp_param.pin_memory and not to_accumulate_grad
530
+ # Since the GPU sharded gradient is allocated in the RS stream,
531
+ # we can free it here by not keeping a ref without waiting for
532
+ # the D2H copy since future RS-stream ops run after the copy
533
+ new_sharded_grad = new_sharded_grad.to(
534
+ torch.device("cpu"), non_blocking=non_blocking
535
+ )
536
+ if non_blocking:
537
+ # Record an event on which to block the CPU thread to
538
+ # ensure that the D2H copy finishes before the optimizer
539
+ fsdp_param.grad_offload_event = reduce_scatter_stream.record_event()
540
+ if to_accumulate_grad:
541
+ assert isinstance(fsdp_param.sharded_param.grad, DTensor)
542
+ fsdp_param.sharded_param.grad._local_tensor += new_sharded_grad
543
+ else:
544
+ new_sharded_dtensor_grad = fsdp_param.to_sharded_dtensor(
545
+ new_sharded_grad
546
+ )
547
+ fsdp_param.sharded_param.grad = new_sharded_dtensor_grad
548
+ if not compiled_autograd_enabled():
549
+ for hook in (
550
+ getattr(fsdp_param.sharded_param, "_post_accumulate_grad_hooks", {})
551
+ or {}
552
+ ).values():
553
+ hook(fsdp_param.sharded_param)
554
+ padded_sharded_numel = padded_unsharded_size.numel() // world_size
555
+ flat_grad_offset += padded_sharded_numel
556
+ post_reduce_event = post_reduce_stream.record_event()
557
+ # The RS output is allocated in the RS stream and used in the default
558
+ # stream (for optimizer). To ensure its memory is not reused for later
559
+ # RSs, we do not need extra synchronization since the sharded parameters
560
+ # hold refs through the end of backward.
561
+ return (
562
+ reduce_scatter_input,
563
+ reduce_scatter_event,
564
+ post_reduce_event,
565
+ all_reduce_input,
566
+ all_reduce_event,
567
+ None,
568
+ )
569
+
570
+
571
+ def foreach_reduce_scatter_copy_in(
572
+ unsharded_grads: list[torch.Tensor],
573
+ reduce_scatter_input: torch.Tensor,
574
+ world_size: int,
575
+ ) -> None:
576
+ reduce_scatter_input = reduce_scatter_input.view(world_size, -1)
577
+ torch.ops.fsdp.chunk_cat(
578
+ unsharded_grads, dim=0, num_chunks=world_size, out=reduce_scatter_input
579
+ )
580
+
581
+
582
+ def _get_all_gather_input_metadatas(
583
+ param_all_gather_inputs: list[list[torch.Tensor]],
584
+ ) -> tuple[list[list[torch.dtype]], list[list[int]], torch.dtype]:
585
+ param_all_gather_input_dtypes: list[list[torch.dtype]] = []
586
+ param_all_gather_input_numels: list[list[int]] = []
587
+ all_gather_dtype = param_all_gather_inputs[0][0].dtype
588
+ for all_gather_inputs in param_all_gather_inputs:
589
+ input_dtypes: list[torch.dtype] = []
590
+ input_numels: list[int] = []
591
+ for all_gather_input in all_gather_inputs:
592
+ if all_gather_input.dtype != all_gather_dtype:
593
+ all_gather_dtype = torch.uint8
594
+ input_dtypes.append(all_gather_input.dtype)
595
+ input_numels.append(all_gather_input.numel())
596
+ param_all_gather_input_dtypes.append(input_dtypes)
597
+ param_all_gather_input_numels.append(input_numels)
598
+ return (
599
+ param_all_gather_input_dtypes,
600
+ param_all_gather_input_numels,
601
+ all_gather_dtype,
602
+ )
603
+
604
+
605
+ def _get_gradient_divide_factors(
606
+ reduce_scatter_group: dist.ProcessGroup,
607
+ all_reduce_group: Optional[dist.ProcessGroup],
608
+ reduce_dtype: torch.dtype,
609
+ device_type: str = "",
610
+ factor: Optional[float] = None,
611
+ force_sum_reduction_for_comms: bool = False,
612
+ ) -> tuple[
613
+ Optional[float],
614
+ Optional[float],
615
+ Union[dist.ReduceOp, dist.ReduceOp.RedOpType],
616
+ Union[dist.ReduceOp, dist.ReduceOp.RedOpType],
617
+ ]:
618
+ # MTIA appears to only support SUM reduction, hence we force it implicitly
619
+ if device_type == "mtia":
620
+ force_sum_reduction_for_comms = True
621
+
622
+ # For fp32/bf16, we do not need to worry about overflow/underflow, so we
623
+ # use NCCL's built-in division to avoid separate div kernels
624
+ overflow_risk = reduce_dtype not in (torch.float32, torch.bfloat16)
625
+
626
+ data_parallel_size = reduce_scatter_group.size()
627
+ if all_reduce_group is not None:
628
+ data_parallel_size *= all_reduce_group.size()
629
+
630
+ if factor is None:
631
+ factor = float(data_parallel_size)
632
+
633
+ if not overflow_risk and not force_sum_reduction_for_comms:
634
+ if factor == data_parallel_size:
635
+ # Warning: NCCL ReduceOp.AVG may produce incorrect results with
636
+ # world size 1.
637
+ return None, None, ReduceOp.AVG, ReduceOp.AVG
638
+ else:
639
+ reduce_scatter_op = torch.distributed._make_nccl_premul_sum(1 / factor)
640
+ return None, None, reduce_scatter_op, ReduceOp.SUM
641
+
642
+ pre_factor: Optional[float]
643
+ if overflow_risk:
644
+ # Since fp16 has smaller dynamic range than fp32/bf16, we want to avoid
645
+ # overflow/underflow. For N data parallel workers, each worker computes
646
+ # g_i, and they collectively reduce (g_1 + ... + g_N) / N. To avoid
647
+ # overflow/underflow, we divide by ~sqrt(N) before/after the reduction.
648
+ pre_factor = 1
649
+ while factor % pre_factor == 0 and factor / pre_factor > pre_factor:
650
+ pre_factor *= 2
651
+ post_factor = factor / pre_factor
652
+ else:
653
+ # Prefer post-multiplying as it operates on less data and is thus faster
654
+ pre_factor, post_factor = None, factor
655
+
656
+ return pre_factor, post_factor, ReduceOp.SUM, ReduceOp.SUM
657
+
658
+
659
+ def _div_if_needed(tensor: torch.Tensor, div_factor: Optional[float]) -> None:
660
+ if div_factor is not None and div_factor != 1:
661
+ tensor.div_(div_factor)
_fsdp_common.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import math
3
+ import traceback
4
+ from dataclasses import dataclass
5
+ from enum import auto, Enum
6
+ from typing import Any, Optional
7
+
8
+ import torch
9
+ import torch.distributed as dist
10
+ import torch.nn as nn
11
+ from torch.distributed._composable.contract import _get_registry
12
+ from torch.distributed.tensor import DeviceMesh, DTensor
13
+ from torch.distributed.tensor._dtensor_spec import DTensorSpec
14
+
15
+
16
+ _compiled_autograd_enabled: bool = False
17
+
18
+ if torch._running_with_deploy():
19
+
20
+ def detect_compiled_autograd():
21
+ pass
22
+
23
+ def compiled_autograd_enabled():
24
+ return False
25
+
26
+ else:
27
+
28
+ def detect_compiled_autograd():
29
+ assert not torch.compiler.is_compiling(), (
30
+ "`detect_compiled_autograd()` is designed to be called in eager mode"
31
+ )
32
+ global _compiled_autograd_enabled
33
+ import torch._dynamo.compiled_autograd as ca
34
+
35
+ _compiled_autograd_enabled = (
36
+ ca.compiled_autograd_enabled
37
+ or ca.compiled_autograd_enabled_force_eager
38
+ or ca.in_compiled_autograd_region
39
+ )
40
+
41
+ def compiled_autograd_enabled():
42
+ global _compiled_autograd_enabled
43
+ return _compiled_autograd_enabled
44
+
45
+
46
+ @dataclass
47
+ class DataParallelMeshInfo:
48
+ mesh: DeviceMesh
49
+ shard_mesh_dim: Optional[int] = None
50
+ replicate_mesh_dim: Optional[int] = None
51
+
52
+ def __post_init__(self):
53
+ if self.shard_mesh_dim is None and self.replicate_mesh_dim is None:
54
+ raise AssertionError(
55
+ "At least one of shard_mesh_dim and replicate_mesh_dim must not be None"
56
+ )
57
+
58
+
59
+ @dataclass
60
+ class FSDPMeshInfo(DataParallelMeshInfo):
61
+ def __post_init__(self):
62
+ super().__post_init__()
63
+ if self.shard_mesh_dim is None:
64
+ raise AssertionError("Expects non-None shard_mesh_dim")
65
+ self.shard_mesh_size: int = self.mesh.size(self.shard_mesh_dim)
66
+ self.shard_process_group = self.mesh.get_group(self.shard_mesh_dim)
67
+ self.shard_mesh_rank: int = self.shard_process_group.rank()
68
+
69
+
70
+ @dataclass
71
+ class DDPMeshInfo(DataParallelMeshInfo):
72
+ def __post_init__(self):
73
+ super().__post_init__()
74
+ if self.replicate_mesh_dim is None:
75
+ raise AssertionError("Expects non-None replicate_mesh_dim")
76
+ self.replicate_mesh_size: int = self.mesh.size(self.replicate_mesh_dim)
77
+ self.replicate_process_group = self.mesh.get_group(self.replicate_mesh_dim)
78
+ self.replicate_mesh_rank: int = self.replicate_process_group.rank()
79
+
80
+
81
+ @dataclass
82
+ class HSDPMeshInfo(FSDPMeshInfo, DDPMeshInfo):
83
+ def __post_init__(self):
84
+ # Calls `FSDPMeshInfo` -> `DDPMeshInfo` -> `DataParallelMeshInfo`
85
+ super().__post_init__()
86
+
87
+
88
+ class TrainingState(Enum):
89
+ """Describes the training state of one FSDP state / parameter group."""
90
+
91
+ # Transition to forward starting pre-forward until post-forward
92
+ FORWARD = auto()
93
+ # Transition to pre-backward when unsharding in backward
94
+ PRE_BACKWARD = auto()
95
+ # Transition to post-backward when resharding and reducing gradients
96
+ POST_BACKWARD = auto()
97
+ # Idle before/after forward or before pre-backward/after post-backward
98
+ IDLE = auto()
99
+
100
+
101
+ def _raise_assert_with_print(*args: Any, **kwargs: Any):
102
+ print(f"[Rank {dist.get_rank()}] ", end="")
103
+ print(*args, **kwargs)
104
+ traceback.print_stack()
105
+ raise AssertionError(*args, **kwargs)
106
+
107
+
108
+ def _is_composable_with_fsdp(module: nn.Module) -> bool:
109
+ registry = _get_registry(module)
110
+ if registry is None:
111
+ return True
112
+ # Registry keys by function name
113
+ return "replicate" not in registry
114
+
115
+
116
+ def _get_dim0_padded_size(tensor_size: torch.Size, dim0_factor: int) -> torch.Size:
117
+ padded_dim0 = math.ceil(tensor_size[0] / dim0_factor) * dim0_factor
118
+ return torch.Size([padded_dim0]) + tensor_size[1:]
119
+
120
+
121
+ def _chunk_with_empty(
122
+ tensor: torch.Tensor, num_chunks: int, dim: int
123
+ ) -> list[torch.Tensor]:
124
+ chunks = list(torch.chunk(tensor, num_chunks, dim=dim))
125
+ while len(chunks) < num_chunks:
126
+ chunks.append(chunks[0].new_empty(0))
127
+ return chunks
128
+
129
+
130
+ def _get_dim_chunked_size(
131
+ chunk: torch.Tensor, unchunked_size: torch.Size, dim: int
132
+ ) -> torch.Size:
133
+ if chunk.numel() > 0:
134
+ return chunk.size()
135
+ # For 0 numel, we need to preserve nonzero-sized dims for DTensor APIs
136
+ return unchunked_size[:dim] + torch.Size([0]) + unchunked_size[dim + 1 :]
137
+
138
+
139
+ def _from_local_no_grad(
140
+ local_tensor: torch.Tensor,
141
+ sharding_spec: DTensorSpec,
142
+ ) -> DTensor:
143
+ """
144
+ This method is similar to ``DTensor.from_local()`` except that in eager mode
145
+ it avoids some CPU overhead by avoiding default args and not being differentiable.
146
+ """
147
+
148
+ if not compiled_autograd_enabled():
149
+ return DTensor(
150
+ # Use the local tensor directly instead of constructing a new tensor
151
+ # variable, e.g. with `view_as()`, since this is not differentiable
152
+ local_tensor,
153
+ sharding_spec,
154
+ requires_grad=local_tensor.requires_grad,
155
+ )
156
+ else:
157
+ return DTensor.from_local(
158
+ local_tensor,
159
+ sharding_spec.mesh,
160
+ sharding_spec.placements,
161
+ shape=sharding_spec.shape,
162
+ stride=sharding_spec.stride,
163
+ )
164
+
165
+
166
+ def _to_dtype_if_needed(
167
+ tensor: torch.Tensor, dtype: Optional[torch.dtype]
168
+ ) -> torch.Tensor:
169
+ if dtype is not None and tensor.dtype != dtype:
170
+ return tensor.to(dtype)
171
+ return tensor
172
+
173
+
174
+ def _cast_fp_tensor(dtype: torch.dtype, x: torch.Tensor) -> torch.Tensor:
175
+ if (
176
+ not isinstance(x, torch.Tensor)
177
+ or not torch.is_floating_point(x)
178
+ or x.dtype == dtype
179
+ ):
180
+ return x
181
+ return x.to(dtype)
_fsdp_init.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import logging
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.distributed as dist
7
+ import torch.nn as nn
8
+ from torch._logging import warning_once
9
+ from torch.distributed.device_mesh import _get_device_handle
10
+ from torch.distributed.tensor import DeviceMesh, DTensor, init_device_mesh
11
+ from torch.utils._python_dispatch import is_traceable_wrapper_subclass
12
+
13
+ from ._fsdp_common import _is_composable_with_fsdp, FSDPMeshInfo, HSDPMeshInfo
14
+ from ._fsdp_state import _get_module_fsdp_state
15
+
16
+
17
+ logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
18
+
19
+
20
+ def _get_post_forward_mesh_info(
21
+ reshard_after_forward: Union[bool, int], mesh_info: FSDPMeshInfo
22
+ ) -> Optional[FSDPMeshInfo]:
23
+ shard_mesh_size = mesh_info.shard_mesh_size
24
+ if not isinstance(reshard_after_forward, (bool, int)):
25
+ raise ValueError(
26
+ "reshard_after_forward should be a bool or an int representing the "
27
+ f"group size to reshard to, not {reshard_after_forward}"
28
+ )
29
+ # NOTE: `isinstance(False, int)` returns `True`.
30
+ if not isinstance(reshard_after_forward, bool) and isinstance(
31
+ reshard_after_forward, int
32
+ ):
33
+ if (
34
+ reshard_after_forward < 1
35
+ or reshard_after_forward > shard_mesh_size
36
+ or shard_mesh_size % reshard_after_forward != 0
37
+ ):
38
+ raise ValueError(
39
+ "If passing reshard_after_forward as an int, it should be a "
40
+ f"factor of {shard_mesh_size}, not {reshard_after_forward}"
41
+ )
42
+ elif reshard_after_forward == 1:
43
+ msg = (
44
+ "reshard_after_forward=1 (int) means resharding parameters to world size 1, "
45
+ "instead of reshard_after_forward=True (bool)"
46
+ )
47
+ warning_once(logger, msg, stacklevel=2)
48
+ reshard_after_forward = False
49
+ elif reshard_after_forward == shard_mesh_size:
50
+ reshard_after_forward = True
51
+ post_forward_mesh_info = None
52
+ if reshard_after_forward is True:
53
+ post_forward_mesh_info = mesh_info
54
+ elif reshard_after_forward is not False: # int case
55
+ # For HSDP, we can flatten the two replicate dims into the 0th dim
56
+ post_forward_mesh_tensor = mesh_info.mesh.mesh.view(-1, reshard_after_forward)
57
+ post_forward_mesh = DeviceMesh(
58
+ mesh_info.mesh.device_type, post_forward_mesh_tensor
59
+ )
60
+ post_forward_mesh_info = HSDPMeshInfo(
61
+ post_forward_mesh, shard_mesh_dim=1, replicate_mesh_dim=0
62
+ )
63
+ return post_forward_mesh_info
64
+
65
+
66
+ def _init_default_fully_shard_mesh() -> DeviceMesh:
67
+ """Default to global CUDA mesh if possible else global CPU mesh."""
68
+ if not dist.distributed_c10d.is_initialized():
69
+ dist.distributed_c10d.init_process_group()
70
+ default_pg = dist.distributed_c10d._get_default_group()
71
+ device = torch._C._get_accelerator()
72
+ mesh = init_device_mesh(device.type, mesh_shape=(default_pg.size(),))
73
+ return mesh
74
+
75
+
76
+ def _get_device_from_mesh(mesh: DeviceMesh) -> torch.device:
77
+ if mesh.device_type == "cpu":
78
+ return torch.device("cpu")
79
+ device_handle = _get_device_handle(mesh.device_type)
80
+ return torch.device(mesh.device_type, device_handle.current_device())
81
+
82
+
83
+ def _ignore_module(
84
+ module: nn.Module,
85
+ ignored_params: set[nn.Parameter],
86
+ ignore_decision: dict[nn.Module, bool],
87
+ ) -> bool:
88
+ """
89
+ Decide if it is safe to ignore a module for applying fully_shard.
90
+ """
91
+ if module in ignore_decision:
92
+ return ignore_decision[module]
93
+
94
+ if len(list(module.buffers(recurse=False))) > 0:
95
+ # Cannot ignore a module with any buffer
96
+ ignore_decision[module] = False
97
+ return False
98
+
99
+ for _, param in module.named_parameters(recurse=False):
100
+ if param not in ignored_params:
101
+ # at least one param is not ignored. So this module shouldn't be.
102
+ ignore_decision[module] = False
103
+ return False
104
+
105
+ # Need to consider descendants of module
106
+ for child in list(module.children()):
107
+ ignore_child = _ignore_module(child, ignored_params, ignore_decision)
108
+ if not ignore_child:
109
+ # Cannot ignore module if one of its children is not ignored
110
+ ignore_decision[module] = False
111
+ return False
112
+
113
+ # Safe to ignore module
114
+ ignore_decision[module] = True
115
+ return True
116
+
117
+
118
+ def _adjust_managed_modules(
119
+ modules: list[nn.Module], ignored_params: set[nn.Parameter]
120
+ ) -> list[nn.Module]:
121
+ """
122
+ Adjust the given list of managed modules by removing those with all parameters ignored.
123
+ """
124
+ ignore_decision: dict[nn.Module, bool] = {}
125
+ new_modules = []
126
+ for module in modules:
127
+ ignored = _ignore_module(module, ignored_params, ignore_decision)
128
+ if not ignored:
129
+ new_modules.append(module)
130
+ return new_modules
131
+
132
+
133
+ def _get_managed_modules(
134
+ root_modules: tuple[nn.Module, ...],
135
+ ignored_params: Optional[set[nn.Parameter]] = None,
136
+ ) -> list[nn.Module]:
137
+ modules: list[nn.Module] = []
138
+ root_modules_set = set(root_modules)
139
+ # Track visisted modules to avoid visiting shared modules multiple times
140
+ visited_modules: set[nn.Module] = set()
141
+
142
+ def dfs(module: nn.Module) -> None:
143
+ """
144
+ Runs a DFS to collect managed modules, not recursing into modules with
145
+ a non-composable API or ``fully_shard`` already applied.
146
+ """
147
+ if not _is_composable_with_fsdp(module):
148
+ return
149
+ elif (
150
+ module not in root_modules_set
151
+ and _get_module_fsdp_state(module) is not None
152
+ ):
153
+ return # nested `fully_shard` module
154
+ visited_modules.add(module)
155
+ for submodule in module.children():
156
+ if submodule not in visited_modules:
157
+ dfs(submodule)
158
+ modules.append(module)
159
+
160
+ for root_module in root_modules:
161
+ dfs(root_module)
162
+
163
+ if ignored_params is None:
164
+ return modules
165
+
166
+ adjusted_modules = _adjust_managed_modules(modules, ignored_params)
167
+ return adjusted_modules
168
+
169
+
170
+ def _verify_managed_param(name: str, param: nn.Parameter) -> None:
171
+ """
172
+ Verify if the parameter is accepted by fully_shard. The only restriction now
173
+ is that the parameter cannot be a scalar tensor (param.numel == 0) since we
174
+ need at least one dim to shard.
175
+ """
176
+ if len(param.shape) == 0:
177
+ raise ValueError(
178
+ "fully_shard doesn't support scalar parameters. "
179
+ f"Change {name} to a 1D tensor with numel equal to 1."
180
+ )
181
+
182
+
183
+ def _get_managed_states(
184
+ modules: list[nn.Module], ignored_params: Optional[set[nn.Parameter]] = None
185
+ ) -> tuple[list[nn.Parameter], list[torch.Tensor]]:
186
+ params: list[nn.Parameter] = []
187
+ buffers: list[torch.Tensor] = []
188
+ # Track visited parameters/buffers to avoid visiting shared parameters and
189
+ # buffers multiple times
190
+ visited_params: set[nn.Parameter] = set()
191
+ visited_buffers: set[torch.Tensor] = set()
192
+ if ignored_params is None:
193
+ ignored_params = set()
194
+
195
+ for module in modules:
196
+ for name, param in module.named_parameters(recurse=False):
197
+ if param in ignored_params:
198
+ # do not include an ignored parameters
199
+ continue
200
+ if param not in visited_params:
201
+ _verify_managed_param(name, param)
202
+ params.append(param)
203
+ visited_params.add(param)
204
+ for buffer in module.buffers(recurse=False):
205
+ if buffer not in visited_buffers:
206
+ buffers.append(buffer)
207
+ visited_buffers.add(buffer)
208
+ return params, buffers
209
+
210
+
211
+ def _move_states_to_device(
212
+ params: list[nn.Parameter],
213
+ buffers: list[torch.Tensor],
214
+ device: torch.device,
215
+ ) -> None:
216
+ """
217
+ We have FSDP move states to device for simpler and faster initialization
218
+ since FSDP almost always uses CUDA for training. We move parameters/buffers
219
+ rather than modules since modules to support ignoring parameters/buffers in
220
+ the future.
221
+ """
222
+ # Follow the logic in `nn.Module._apply`
223
+ for tensor in itertools.chain(params, buffers):
224
+ if tensor.device == device or tensor.device.type == "meta":
225
+ # Keep meta-device tensors on meta device for deferred init
226
+ continue
227
+ if isinstance(tensor, DTensor):
228
+ if (dtensor_mesh_type := tensor.device_mesh.device_type) != device.type:
229
+ raise ValueError(
230
+ "Requires DTensor to have mesh of the same type as the FSDP mesh "
231
+ f"but got {dtensor_mesh_type} for DTensor and {device.type} for FSDP"
232
+ )
233
+ raise AssertionError(
234
+ f"Expects DTensor to be moved to {dtensor_mesh_type} but got {tensor.device}"
235
+ )
236
+ tensor_ = tensor
237
+ if is_traceable_wrapper_subclass(tensor_):
238
+ with torch.no_grad(): # avoid autograd increasing C++ refcount by 1
239
+ tensor_on_device = nn.Parameter(tensor.to(device))
240
+ torch.utils.swap_tensors(tensor, tensor_on_device)
241
+ else:
242
+ tensor.data = tensor.to(device)
_fsdp_param.py ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import inspect
3
+ import itertools
4
+ from collections.abc import Sequence
5
+ from dataclasses import dataclass, field
6
+ from enum import auto, Enum
7
+ from typing import Any, Callable, cast, Optional
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ from torch._prims_common import make_contiguous_strides_for
12
+ from torch.distributed._functional_collectives import AsyncCollectiveTensor
13
+ from torch.distributed.tensor import DTensor, Replicate, Shard
14
+ from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
15
+ from torch.distributed.tensor.device_mesh import _mesh_resources
16
+ from torch.distributed.tensor.placement_types import _StridedShard, Placement
17
+
18
+ from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
19
+ from ._fsdp_common import (
20
+ _chunk_with_empty,
21
+ _from_local_no_grad,
22
+ _get_dim_chunked_size,
23
+ _raise_assert_with_print,
24
+ _to_dtype_if_needed,
25
+ compiled_autograd_enabled,
26
+ FSDPMeshInfo,
27
+ HSDPMeshInfo,
28
+ )
29
+
30
+
31
+ """
32
+ [Note: FSDP tensors]
33
+ FSDP considers the following tensors:
34
+ - Original parameter: parameter passed to :class:`FSDPParam`, i.e. the one
35
+ on the module when applying FSDP
36
+ - Sharded parameter: sharding the original parameter on dim-0 (or a
37
+ user-specified dim) as a DTensor over the main mesh
38
+ - All-gather inputs: the ``torch.Tensor`` or ``Tensor`` s passed to all-gather,
39
+ derived from the sharded parameter
40
+ - All-gather output: the ``torch.Tensor`` or ``Tensor`` s resulting from
41
+ all-gathering the all-gather inputs
42
+ - Unsharded parameter: parameter used for forward/backward computation, derived
43
+ from the all-gather output; autograd leaf
44
+
45
+ We define these tensors to describe the general framework that can accommodate
46
+ extensions, where:
47
+ - all-gather-inputs = pre-all-gather-transform(sharded-parameter)
48
+ - unsharded-parameter = post-all-gather-transform(all-gather-outputs)
49
+
50
+ For the default ``torch.Tensor`` case, there is only one all-gather input, and
51
+ it shares the same underlying tensor data as the sharded parameter, meaning
52
+ that they can be thought of as the same tensors. The same applies for the
53
+ all-gather output and unsharded parameter. For non-``torch.Tensor`` extensions,
54
+ these equivalences may no longer hold due to the pre/post-all-gather
55
+ transforms, and some may have multiple all-gather inputs/outputs (e.g.
56
+ quantized data and scales).
57
+
58
+ [Note: FSDP and autograd]
59
+ FSDP dynamically frees and allocates the unsharded parameter. Since autograd
60
+ can pack a reference to it or a view to save for backward, we use storage
61
+ resizing to implement the freeing/allocation since that preserves the aliasing.
62
+ This implies that we construct the unsharded parameter object once and write to
63
+ it in-place thereafter. For the default ``torch.Tensor` original parameter
64
+ case, the all-gather output and unsharded parameter share the same
65
+ data, so we use storage resizing on the all-gather output.
66
+ """
67
+
68
+ lib = torch.library.Library("fsdp", "FRAGMENT") # noqa: TOR901
69
+
70
+ lib.define("copy_(Tensor(a!) tensor, Tensor data) -> ()")
71
+
72
+
73
+ @torch.library.impl(lib, "copy_", "Meta")
74
+ @torch.library.impl(lib, "copy_", "CUDA")
75
+ @torch.library.impl(lib, "copy_", "XPU")
76
+ @torch.library.impl(lib, "copy_", "HPU")
77
+ @torch.library.impl(lib, "copy_", "CPU")
78
+ @torch.library.impl(lib, "copy_", "MTIA")
79
+ def copy_(tensor, data):
80
+ tensor.copy_(data)
81
+
82
+
83
+ """
84
+ [Note: Avoiding functionalization for fsdp.copy_ and inductor.resize_storage_bytes_]
85
+
86
+ Currently we don't functionalize `fsdp.copy_` op or `inductor.resize_storage_bytes_` op
87
+ (i.e. they show up as a mutation op in the middle of the AOT joint graph).
88
+
89
+ Reason:
90
+ Traceable FSDP2 compiled autograd BWD graph have the following traits:
91
+ (1) Two inputs of the graph were aliased to each other (one from hook closed-over tensors, one from FWD saved tensors).
92
+ (2) One of them is mutated (copy_ and resize_ to handle the all-gathered param).
93
+ (3) They are both subclasses.
94
+ The combination of these traits is not supported by AOTAutograd (it's difficult to reason about subclass aliasing).
95
+ So this doesn't work at all for Traceable FSDP2.
96
+
97
+ The compromise we use is to avoid functionalization for the FSDP2 copy_ and resize_ ops.
98
+ This avoids the problem above, because from AOTAutograd point-of-view there are no mutations
99
+ that functionalization needs to handle. (Although we need to be careful not to DCE those mutable ops.)
100
+
101
+ We can avoid this functionalization because:
102
+ (1) The nn.Parameter is never used before its .copy_() is called in eager code (i.e. no alias of it is created),
103
+ so it's safe to call .copy_() in the middle of the graph to update its content and start using the nn.Parameter downstream.
104
+ (2) We always re-allocate the buffer for nn.Parameter to store the AllGather output and to be used in downstream user ops.
105
+ So calling resize-to-0 in the middle of the graph to free nn.Parameter memory after use should always be okay
106
+ (since we always allocate anew next time we need it, we strictly don't need to keep the old tensor storage around anymore).
107
+
108
+ Q: Wouldn't the extra resize_ and copy_ ops hurt both memory usage and performance?
109
+ A: Yes it would. As an optimization, we have an Inductor post-grad FX pass to remove those resize_ and copy_ ops
110
+ for unsharded params that have this pattern: resize_(full) -> copy_ -> resize_(0).
111
+
112
+ TODO:
113
+ Now that we are maintaining the invariant of "no aliased + mutated graph inputs" in both the forward and backward,
114
+ it is now more feasible to functionalize all of the mutable FSDP ops. Some of the pros and cons are:
115
+
116
+ Cons (of functionalizing those ops):
117
+ (1) By not functionalizing them as we are today, we are making it more likely that they will run at the "correct" time
118
+ in the generated code. If we start to functionalize them, we will need to make sure that Inductor reinplaces them
119
+ in a way where it properly moves the mutations back to exactly where they should have run, or we risk suffering worse
120
+ peak memory than eager. (We probably already need to do something similar in Inductor's reinplacing for copy_:
121
+ https://github.com/pytorch/pytorch/issues/135305#issuecomment-2334888089)
122
+
123
+ Pros (of functionalizing):
124
+ (1) Better safety, we don't need to worry about the graph passes in inductor/partitioning handling input mutations
125
+ mid-graph quite as much (to be fair we've already done some amount of auditing, but we might have to do some more).
126
+ (2) Better perf: each mutation midway through the graph prevents Inductor from pattern matching across it.
127
+ But maybe there are few enough mutations induced by FSDP for this to matter.
128
+ """
129
+
130
+
131
+ @torch.library.impl(lib, "copy_", "Functionalize")
132
+ def copy__functionalize(tensor, data):
133
+ torch._sync(tensor)
134
+ torch._sync(data)
135
+ tensor_inner = torch._from_functional_tensor(tensor)
136
+ data_inner = torch._from_functional_tensor(data)
137
+ with torch._C._ExcludeDispatchKeyGuard(
138
+ torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
139
+ ):
140
+ torch.ops.fsdp.copy_.default(tensor_inner, data_inner)
141
+
142
+
143
+ if not torch._running_with_deploy():
144
+ torch.fx.node.has_side_effect(torch.ops.fsdp.copy_.default)
145
+
146
+
147
+ class ShardedState(Enum):
148
+ """
149
+ - ``SHARDED``: The sharded parameter is registered to the module. It is the
150
+ only contributor to parameter memory.
151
+ - ``SHARDED_POST_FORWARD``: The unsharded parameter is resharded to a
152
+ smaller world size. Since this data should not be used for computation,
153
+ we do not register it to the module. Users should reshard the module
154
+ before any in-place modifications. Both it and the sharded parameter
155
+ contribute to parameter memory.
156
+ - ``UNSHARDED``: The unsharded parameter is registered to the module. Both
157
+ it and the sharded parameter contribute to parameter memory.
158
+ """
159
+
160
+ SHARDED = auto()
161
+ SHARDED_POST_FORWARD = auto()
162
+ UNSHARDED = auto()
163
+
164
+
165
+ @dataclass
166
+ class ParamModuleInfo:
167
+ """
168
+ For a parameter, this stores the module and the parameter name to be able
169
+ to do a parameter swap via ``setattr(module, param_name, ...)`` or to get
170
+ the parameter via ``getattr(module, param_name)``. We additionally save
171
+ shared modules and shared parameter names to update them accordingly.
172
+ """
173
+
174
+ # Parameter names are unprefixed, e.g. "weight", not "lin.weight"
175
+ module: nn.Module
176
+ param_name: str
177
+ shared_modules: list[nn.Module] = field(default_factory=list)
178
+ shared_param_names: list[str] = field(default_factory=list)
179
+
180
+
181
+ @dataclass
182
+ class ExtensionsData:
183
+ # User-defined metadata passed from pre to post-all-gather
184
+ all_gather_metadata: Optional[Any] = None
185
+ # Save the all-gather input sizes to unflatten the all-gather outputs to ND
186
+ all_gather_input_sizes: Sequence[torch.Size] = () # ND
187
+
188
+ def clear(self):
189
+ self.all_gather_metadata = None
190
+ self.all_gather_input_sizes = ()
191
+
192
+
193
+ class FSDPParam:
194
+ """
195
+ This class manages a parameter with FSDP or FSDP variants applied,
196
+ implementing dim-0 per-parameter sharding.
197
+ """
198
+
199
+ orig_dtype: torch.dtype
200
+ param_dtype: Optional[torch.dtype]
201
+ reduce_dtype: Optional[torch.dtype]
202
+ _orig_size: torch.Size # ND
203
+ sharded_size: torch.Size # ND
204
+ contiguous_sharded_stride: tuple[int, ...]
205
+ padded_sharded_param_size: torch.Size # ND
206
+ sharded_post_forward_size: torch.Size # ND
207
+ contiguous_sharded_post_forward_stride: tuple[int, ...]
208
+ _sharded_param_data: torch.Tensor # 1D
209
+ sharded_param: nn.Parameter # ND
210
+ _sharded_post_forward_param_data: Optional[torch.Tensor] # 1D
211
+ _sharded_post_forward_param: Optional[nn.Parameter] # ND
212
+ _unsharded_param: nn.Parameter # ND
213
+ unsharded_accumulated_grad: Optional[torch.Tensor] # ND
214
+ _sharding_spec: DTensorSpec
215
+ # DTensor attributes (only defined for DTensor `param`):
216
+ _tp_spec: DTensorSpec
217
+ all_gather_outputs: list[torch.Tensor] # 1D
218
+ # All-gather extension attributes
219
+ _extensions_data: ExtensionsData
220
+ _unsharded_inner_tensors: list[torch.Tensor]
221
+
222
+ def __init__(
223
+ self,
224
+ param: nn.Parameter,
225
+ module_info: ParamModuleInfo,
226
+ mesh_info: FSDPMeshInfo,
227
+ post_forward_mesh_info: Optional[FSDPMeshInfo],
228
+ device: torch.device,
229
+ shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]],
230
+ mp_policy: MixedPrecisionPolicy,
231
+ offload_policy: OffloadPolicy,
232
+ ):
233
+ self._module_info: ParamModuleInfo = module_info
234
+ self.mesh_info = mesh_info
235
+ self.post_forward_mesh_info = post_forward_mesh_info
236
+ self.device = device
237
+ self.mp_policy = mp_policy
238
+ self.offload_to_cpu: bool = isinstance(offload_policy, CPUOffloadPolicy)
239
+ self.pin_memory = (
240
+ self.offload_to_cpu and cast(CPUOffloadPolicy, offload_policy).pin_memory
241
+ )
242
+ self.grad_offload_event: Optional[torch.Event] = None
243
+ self._init_sharded_param(param, device, shard_placement_fn)
244
+ if self.post_forward_mesh_info:
245
+ self._init_sharded_post_forward_param_metadata(param)
246
+ self._init_extensions()
247
+ self.all_gather_outputs: list[torch.Tensor] = []
248
+ self.unsharded_accumulated_grad = None
249
+ self._param_fqn: Optional[str] = None # prefixed from root module
250
+ # TODO: Remove this padding logic once DTensor pads the local tensor:
251
+ # https://github.com/pytorch/pytorch/issues/113045
252
+ self._post_load_hook_handle = (
253
+ module_info.module.register_load_state_dict_post_hook(
254
+ lambda *args, **kwargs: self.reset_sharded_param()
255
+ )
256
+ )
257
+
258
+ @torch.no_grad()
259
+ def _init_sharded_param(
260
+ self,
261
+ param: nn.Parameter,
262
+ device: torch.device,
263
+ shard_placement_fn: Optional[Callable],
264
+ ):
265
+ if param.device != device and param.device.type != "meta":
266
+ raise AssertionError(
267
+ f"Expects the parameter to already be moved to device {device} but got {param.device}"
268
+ )
269
+ if not param.is_contiguous():
270
+ raise NotImplementedError(
271
+ f"FSDP does not support non-contiguous parameters yet: {param.shape=} {param.stride()=}"
272
+ )
273
+ fsdp_placement = shard_placement_fn(param) if shard_placement_fn else None
274
+ if fsdp_placement is None:
275
+ fsdp_placement = Shard(0)
276
+ elif fsdp_placement.dim < 0:
277
+ fsdp_placement = Shard(fsdp_placement.dim + param.ndim)
278
+ assert isinstance(fsdp_placement, Shard), f"{fsdp_placement}"
279
+ self.fsdp_placement = fsdp_placement
280
+ shard_dim = fsdp_placement.dim
281
+ # TODO: Replace the sharded DTensor parameter construction logic with
282
+ # `distribute_tensor` after https://github.com/pytorch/pytorch/issues/116101
283
+ # TODO: Simplify the following sharded parameter padding logic after
284
+ # https://github.com/pytorch/pytorch/issues/113045
285
+ self.is_dtensor = isinstance(param, DTensor)
286
+ if self.is_dtensor:
287
+ self._tp_spec = cast(DTensor, param)._spec
288
+ dp_mesh, tp_mesh = (self.mesh_info.mesh, self._tp_spec.mesh)
289
+ dp_global_mesh = _mesh_resources.get_root_mesh(dp_mesh)
290
+ tp_global_mesh = _mesh_resources.get_root_mesh(tp_mesh)
291
+ if dp_global_mesh != tp_global_mesh or (
292
+ dp_global_mesh is None or tp_global_mesh is None
293
+ ):
294
+ raise AssertionError(
295
+ "FSDP requires the DP and TP mesh to have the same parent mesh but got: \n"
296
+ f"DP's global mesh: {dp_global_mesh}\nTP's global mesh: {tp_global_mesh}"
297
+ )
298
+ name_dims_error = "FSDP requires named DeviceMesh dims for ND parallelism"
299
+ assert dp_mesh.mesh_dim_names is not None, name_dims_error
300
+ assert tp_mesh.mesh_dim_names is not None, name_dims_error
301
+ submesh_names = dp_mesh.mesh_dim_names + tp_mesh.mesh_dim_names
302
+ self._spmd_mesh = dp_global_mesh[submesh_names]
303
+ if len(self._tp_spec.placements) != 1:
304
+ raise NotImplementedError(
305
+ f"FSDP only supports 1D TP, not {self._tp_spec.placements}"
306
+ )
307
+ split_factor = self._tp_spec.num_shards_map[shard_dim]
308
+ assert 2 <= self._spmd_mesh.ndim <= 3, (
309
+ f"_spmd_mesh.ndim can only be 2 or 3 but got {self._spmd_mesh.ndim}."
310
+ )
311
+ self._spmd_placements: tuple[Placement, ...]
312
+ dp_shard_tp_placement = (
313
+ (
314
+ _StridedShard(shard_dim, split_factor=split_factor)
315
+ if split_factor > 1
316
+ else fsdp_placement
317
+ ),
318
+ self._tp_spec.placements[0],
319
+ )
320
+ if self._spmd_mesh.ndim == 2:
321
+ self._spmd_placements = dp_shard_tp_placement
322
+ else:
323
+ assert self.mesh_info.replicate_mesh_dim == 0
324
+ self._spmd_placements = (Replicate(),) + dp_shard_tp_placement
325
+ self._sharding_spec = DTensorSpec(
326
+ self._spmd_mesh,
327
+ self._spmd_placements,
328
+ tensor_meta=self._tp_spec.tensor_meta,
329
+ )
330
+ param_data = cast(DTensor, param)._local_tensor
331
+ else:
332
+ self._spmd_mesh = self.mesh_info.mesh
333
+ if isinstance(self.mesh_info, HSDPMeshInfo):
334
+ self._spmd_placements = (Replicate(), fsdp_placement)
335
+ else:
336
+ self._spmd_placements = (fsdp_placement,)
337
+ self._sharding_spec = DTensorSpec(
338
+ self._spmd_mesh,
339
+ self._spmd_placements,
340
+ tensor_meta=TensorMeta(param.size(), param.stride(), param.dtype),
341
+ )
342
+ param_data = param
343
+ assert param_data.is_contiguous(), f"{param_data.shape=} {param_data.stride()=}"
344
+ shard_dim = fsdp_placement.dim
345
+ if shard_dim >= param_data.ndim:
346
+ raise AssertionError(
347
+ f"Shard dim {shard_dim} is invalid for {param_data.ndim}D tensor: {param.shape}"
348
+ )
349
+ self._orig_size = param_data.size()
350
+ self._contiguous_orig_stride = make_contiguous_strides_for(self._orig_size)
351
+ shard_rank = self.mesh_info.shard_mesh_rank
352
+ shard_world_size = self.mesh_info.shard_mesh_size
353
+ if shard_dim > 0 and param_data.size(shard_dim) % shard_world_size != 0:
354
+ # If sharding on nonzero dim, require even sharding for now because
355
+ # the uneven sharding (1) requires extra copies before/after FSDP
356
+ # collectives and (2) introduces extra complexity to handle padding
357
+ # and unpadding
358
+ raise NotImplementedError(
359
+ f"FSDP does not support uneven sharding on dim {shard_dim}: "
360
+ f"{param_data.size()} (world size: {shard_world_size})"
361
+ )
362
+ chunks = _chunk_with_empty(param_data, shard_world_size, dim=shard_dim)
363
+ sharded_param = chunks[shard_rank]
364
+ self.sharded_size = _get_dim_chunked_size(
365
+ sharded_param, param_data.size(), dim=shard_dim
366
+ )
367
+ self.contiguous_sharded_stride = make_contiguous_strides_for(self.sharded_size)
368
+ padded_sharded_size = chunks[0].size() # 0th always padded
369
+ self.padded_sharded_param_size = padded_sharded_size
370
+ # Pre-pad the sharded parameter to avoid padding before all-gather
371
+ padded_sharded_param = param_data.new_zeros(padded_sharded_size)
372
+ if sharded_param.numel() > 0:
373
+ padded_sharded_param.narrow(
374
+ dim=shard_dim, start=0, length=sharded_param.size(shard_dim)
375
+ ).copy_(sharded_param)
376
+ if self.offload_to_cpu and not padded_sharded_param.is_meta:
377
+ padded_sharded_param = padded_sharded_param.cpu()
378
+ if self.pin_memory:
379
+ padded_sharded_param = padded_sharded_param.pin_memory(
380
+ device=self.device
381
+ )
382
+ self._sharded_param_data = padded_sharded_param.view(-1)
383
+ length = sharded_param.size(shard_dim) if sharded_param.numel() > 0 else 0
384
+ sharded_param = padded_sharded_param.narrow(
385
+ dim=shard_dim, start=0, length=length
386
+ )
387
+ assert sharded_param.is_contiguous(), f"{self.fsdp_placement=}"
388
+ self.sharded_param = nn.Parameter(self.to_sharded_dtensor(sharded_param))
389
+ self.sharded_param.requires_grad_(param.requires_grad)
390
+ # Let `param_data` be freed normally when its ref count reaches 0 when
391
+ # the `fully_shard` call returns to allow provided parameters to alias
392
+ self._setattr_on_modules(self.sharded_param)
393
+ self.sharded_state = ShardedState.SHARDED
394
+
395
+ def _init_sharded_post_forward_param_metadata(self, param: torch.Tensor) -> None:
396
+ mesh_info = self.post_forward_mesh_info
397
+ assert mesh_info is not None # mypy
398
+ param_data = param._local_tensor if isinstance(param, DTensor) else param
399
+ chunks = _chunk_with_empty(param_data, mesh_info.shard_mesh_size, dim=0)
400
+ self.sharded_post_forward_size = _get_dim_chunked_size(
401
+ chunks[mesh_info.shard_mesh_rank],
402
+ param_data.size(),
403
+ dim=self.fsdp_placement.dim,
404
+ )
405
+ self.contiguous_sharded_post_forward_stride = make_contiguous_strides_for(
406
+ self.sharded_post_forward_size
407
+ )
408
+
409
+ def init_dtype_attrs(self, mp_policy: MixedPrecisionPolicy):
410
+ param_dtype, reduce_dtype = (mp_policy.param_dtype, mp_policy.reduce_dtype)
411
+ self.orig_dtype = self.sharded_param.dtype
412
+ # Clamp `reduce_dtype` to `None` if no casting is required: since
413
+ # gradients are computed in `param_dtype`, if `reduce_dtype` matches,
414
+ # then we do not need extra casting
415
+ if reduce_dtype == param_dtype:
416
+ reduce_dtype = None
417
+ # Clamp `param_dtype` to `None` if no casting is required
418
+ if param_dtype == self.orig_dtype:
419
+ param_dtype = None
420
+ self.param_dtype = param_dtype
421
+ self.reduce_dtype = reduce_dtype
422
+ # None indicates that the mixed precision is not enabled
423
+
424
+ def _init_extensions(self) -> None:
425
+ inner_tensor = self._sharded_local_tensor
426
+ has_fsdp_pre_all_gather = hasattr(inner_tensor, "fsdp_pre_all_gather")
427
+ has_fsdp_post_all_gather = hasattr(inner_tensor, "fsdp_post_all_gather")
428
+ if has_fsdp_pre_all_gather != has_fsdp_post_all_gather:
429
+ raise AssertionError(
430
+ "Both fsdp_pre_all_gather and fsdp_post_all_gather should be defined "
431
+ f"if using all-gather extensions: {inner_tensor}"
432
+ )
433
+ if has_fsdp_pre_all_gather:
434
+ self._extensions_data = ExtensionsData()
435
+ self._unsharded_inner_tensors: list[torch.Tensor] = []
436
+
437
+ def init_all_gather_outputs(
438
+ self,
439
+ all_gather_input_numels: list[int],
440
+ all_gather_input_dtypes: list[torch.dtype],
441
+ world_size: int,
442
+ device: torch.device,
443
+ force_recreate: bool = False,
444
+ ):
445
+ if not force_recreate and len(self.all_gather_outputs) > 0:
446
+ return # already initialized
447
+ self.all_gather_outputs = [
448
+ torch.empty(torch.Size([numel * world_size]), dtype=dtype, device=device)
449
+ for numel, dtype in zip(all_gather_input_numels, all_gather_input_dtypes)
450
+ ]
451
+
452
+ def init_unsharded_param(self):
453
+ """
454
+ [Note: Invariants for torch.compile Traceable FSDP2]
455
+ 1. Under compile, we always re-populate the content of `self._unsharded_param`
456
+ per AllGather using the slow path.
457
+ 2. Under compile, we always recreate `self.all_gather_outputs` per AllGather.
458
+ This is to ensure the buffer creation is internal to the graph and
459
+ avoid `self.all_gather_outputs` being captured as a graph input.
460
+ 3. Under compile, at the end of `free_unsharded_param()`, we always clean up
461
+ `self.all_gather_outputs` and `self._unsharded_inner_tensors`,
462
+ to avoid them being captured as graph output.
463
+
464
+ With these invariants, only these tensors will be inputs to the graph:
465
+ - Sharded parameters
466
+ - Placeholders for the `self._unsharded_param` nn.Parameter
467
+ """
468
+ if not compiled_autograd_enabled() and hasattr(
469
+ self, "_unsharded_param"
470
+ ): # after the 1st all-gather
471
+ inner_tensor = self._sharded_local_tensor
472
+ if not hasattr(inner_tensor, "fsdp_post_all_gather"):
473
+ return # already initialized
474
+ for tensor in self._unsharded_inner_tensors:
475
+ alloc_storage(tensor)
476
+ all_gather_outputs = self._unflatten_all_gather_outputs()
477
+ inner_tensor.fsdp_post_all_gather(
478
+ all_gather_outputs,
479
+ self._extensions_data.all_gather_metadata,
480
+ self.param_dtype or self.orig_dtype,
481
+ out=self._unsharded_param,
482
+ )
483
+ self._extensions_data.clear()
484
+ return
485
+ inner_tensor = self._sharded_local_tensor
486
+ if not compiled_autograd_enabled() and hasattr(
487
+ inner_tensor, "fsdp_post_all_gather"
488
+ ):
489
+ all_gather_outputs = self._unflatten_all_gather_outputs()
490
+ (
491
+ unsharded_tensor,
492
+ self._unsharded_inner_tensors,
493
+ ) = inner_tensor.fsdp_post_all_gather(
494
+ all_gather_outputs,
495
+ self._extensions_data.all_gather_metadata,
496
+ self.param_dtype or self.orig_dtype,
497
+ )
498
+ self._extensions_data.clear()
499
+ else:
500
+ # For the default path (no post-all-gather), the all-gather output
501
+ # gives the unsharded parameter data directly
502
+ assert len(self.all_gather_outputs) == 1, f"{len(self.all_gather_outputs)}"
503
+ unsharded_tensor = self.all_gather_outputs[0]
504
+ unsharded_param = torch.as_strided(
505
+ unsharded_tensor,
506
+ self._orig_size,
507
+ self._contiguous_orig_stride,
508
+ storage_offset=0,
509
+ )
510
+ if self.is_dtensor:
511
+ unsharded_param = _from_local_no_grad(unsharded_param, self._tp_spec)
512
+ if hasattr(self, "_unsharded_param"):
513
+ assert compiled_autograd_enabled()
514
+ with (
515
+ torch.no_grad(),
516
+ torch.autograd._unsafe_preserve_version_counter(self._unsharded_param),
517
+ ):
518
+ # NOTE: Under compile, if an unsharded param goes through
519
+ # resize_(full) -> copy_ -> resize_(0) pattern, we will remove those
520
+ # resize_ and copy_ ops in a compiler graph pass
521
+ # `remove_fsdp2_unsharded_param_graph_input_usage` to recover performance.
522
+ self._unsharded_param.untyped_storage().resize_(
523
+ self._unsharded_param.numel() * self._unsharded_param.itemsize
524
+ )
525
+ torch.ops.fsdp.copy_(self._unsharded_param, unsharded_param)
526
+ else:
527
+ self._unsharded_param = nn.Parameter(
528
+ unsharded_param, requires_grad=self.sharded_param.requires_grad
529
+ )
530
+
531
+ def _unflatten_all_gather_outputs(self) -> tuple[torch.Tensor, ...]:
532
+ return tuple(
533
+ t.view(-1, *s[1:])
534
+ for t, s in zip(
535
+ self.all_gather_outputs, self._extensions_data.all_gather_input_sizes
536
+ )
537
+ )
538
+
539
+ def to_sharded(self) -> None:
540
+ self._setattr_on_modules(self.sharded_param)
541
+ self.free_unsharded_param()
542
+ self.sharded_state = ShardedState.SHARDED
543
+
544
+ def to_sharded_post_forward(self) -> None:
545
+ if self.is_dtensor:
546
+ raise NotImplementedError(
547
+ "Resharding to smaller mesh with TP is not supported yet"
548
+ )
549
+ self._assert_in_states(ShardedState.UNSHARDED)
550
+ assert self.post_forward_mesh_info is not None # mypy
551
+ assert len(self.all_gather_outputs) == 1
552
+ shard_world_size = self.post_forward_mesh_info.shard_mesh_size
553
+ if (numel := self.all_gather_outputs[0].numel()) % shard_world_size != 0:
554
+ _raise_assert_with_print(
555
+ f"All-gather output size ({numel}) must be divisible by the shard "
556
+ f"world size ({shard_world_size})"
557
+ )
558
+ shard_rank = self.post_forward_mesh_info.shard_mesh_rank
559
+ sharded_numel = numel // shard_world_size
560
+ self._sharded_post_forward_param_data = (
561
+ self.all_gather_outputs[0].narrow(
562
+ 0, sharded_numel * shard_rank, sharded_numel
563
+ )
564
+ ).clone() # clone to be able to free all-gather output
565
+ sharded_post_forward_tensor = torch.as_strided(
566
+ self._sharded_post_forward_param_data,
567
+ size=self.sharded_post_forward_size,
568
+ stride=self.contiguous_sharded_post_forward_stride,
569
+ storage_offset=0,
570
+ )
571
+ self._sharded_post_forward_param = nn.Parameter(
572
+ self.to_sharded_post_forward_dtensor(sharded_post_forward_tensor)
573
+ )
574
+ self._setattr_on_modules(self._sharded_post_forward_param)
575
+ self.free_unsharded_param()
576
+ self.sharded_state = ShardedState.SHARDED_POST_FORWARD
577
+
578
+ def to_unsharded(self) -> None:
579
+ # Assume that the data has been allocated and all-gathered
580
+ set_requires_grad_if_needed(self.sharded_param, self._unsharded_param)
581
+ self._setattr_on_modules(self._unsharded_param)
582
+ if self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
583
+ # The data is allocated in the default stream via the post-forward
584
+ # reshard and must be kept alive for the next all-gather copy-in.
585
+ # Since we call this method after the copy-out, the data's lifetime
586
+ # is ensured without further synchronization.
587
+ self._sharded_post_forward_param = None
588
+ self._sharded_post_forward_param_data = None # free
589
+ self.sharded_state = ShardedState.UNSHARDED
590
+
591
+ def _setattr_on_modules(self, param: nn.Parameter) -> None:
592
+ unsafe_setattr_param(
593
+ self._module_info.module, self._module_info.param_name, param
594
+ )
595
+ for shared_module, shared_param_name in zip(
596
+ self._module_info.shared_modules, self._module_info.shared_param_names
597
+ ):
598
+ unsafe_setattr_param(shared_module, shared_param_name, param)
599
+
600
+ def to_sharded_dtensor(self, tensor: torch.Tensor) -> DTensor:
601
+ """
602
+ Converts a local tensor representing either the sharded parameter or
603
+ sharded gradient to DTensor.
604
+ """
605
+ if tensor.shape != self.sharded_size:
606
+ _raise_assert_with_print(
607
+ f"Expects size {self.sharded_size} but got {tensor.shape}"
608
+ )
609
+ return _from_local_no_grad(
610
+ tensor,
611
+ self._sharding_spec,
612
+ )
613
+
614
+ def to_sharded_post_forward_dtensor(self, tensor: torch.Tensor) -> DTensor:
615
+ if tensor.shape != self.sharded_post_forward_size:
616
+ _raise_assert_with_print(
617
+ f"Expects size {self.sharded_post_forward_size} but got {tensor.shape}"
618
+ )
619
+ assert isinstance(self.post_forward_mesh_info, HSDPMeshInfo)
620
+ # TODO: Prefer this DTensor to be read-only and generalize the
621
+ # placement once we support TP.
622
+ post_forward_sharding_spec = DTensorSpec(
623
+ self.post_forward_mesh_info.mesh,
624
+ (Replicate(), Shard(0)),
625
+ tensor_meta=self._sharding_spec.tensor_meta,
626
+ )
627
+ return _from_local_no_grad(tensor, post_forward_sharding_spec)
628
+
629
+ def to_accumulated_grad_if_needed(self) -> None:
630
+ # Access `_unsharded_param` to bypass the sharded state check since we
631
+ # prefer to reshard before upcasting the gradient to save memory
632
+ if (
633
+ self.reduce_dtype is None
634
+ or self._unsharded_param.grad is None
635
+ or self._unsharded_param.grad.dtype == self.reduce_dtype
636
+ ):
637
+ return
638
+ unsharded_grad = self._unsharded_param.grad
639
+ self._unsharded_param.grad = None
640
+ self.unsharded_accumulated_grad = unsharded_grad.to(self.reduce_dtype)
641
+
642
+ def accumulate_unsharded_grad_if_needed(self) -> None:
643
+ if (
644
+ self.unsharded_accumulated_grad is not None
645
+ and self.unsharded_param.grad is not None
646
+ ):
647
+ self.unsharded_accumulated_grad += self.unsharded_param.grad
648
+ self.unsharded_param.grad = None
649
+
650
+ def alloc_all_gather_outputs(self) -> None:
651
+ for tensor in self.all_gather_outputs:
652
+ alloc_storage(tensor)
653
+
654
+ def free_unsharded_param(self) -> None:
655
+ if compiled_autograd_enabled():
656
+ """
657
+ Assumptions under compile:
658
+ - `self._unsharded_param` is NOT an alias of `self.all_gather_outputs`.
659
+ Instead, we resize `self._unsharded_param` storage size to full and then
660
+ explicitly *copy* the data from `self.all_gather_outputs` to `self._unsharded_param`
661
+ in `init_unsharded_param()`. (For full-graph FSDP2 case, we will then remove
662
+ the resize_ and copy_ ops in a compiler graph pass to recover performance.)
663
+ - `self.all_gather_outputs` and `self._unsharded_inner_tensors` are NOT
664
+ graph inputs. They are created within the graph and is guaranteed to be freed
665
+ by the end of the graph. They don't leak outside of the graph.
666
+ """
667
+ self._unsharded_param.untyped_storage().resize_(0)
668
+ self.all_gather_outputs = []
669
+ self._unsharded_inner_tensors = []
670
+ else:
671
+ for tensor in itertools.chain(
672
+ self.all_gather_outputs, self._unsharded_inner_tensors
673
+ ):
674
+ free_storage(tensor)
675
+
676
+ @property
677
+ def all_gather_inputs(self) -> list[torch.Tensor]: # 1D
678
+ self._assert_in_states(ShardedState.SHARDED, ShardedState.SHARDED_POST_FORWARD)
679
+ if self.sharded_state == ShardedState.SHARDED:
680
+ if not compiled_autograd_enabled() and hasattr(
681
+ self._sharded_local_tensor, "fsdp_pre_all_gather"
682
+ ):
683
+ sharded_local_tensor = self._sharded_local_tensor
684
+ if self.offload_to_cpu:
685
+ sharded_local_tensor = sharded_local_tensor.to(
686
+ self.device, non_blocking=True
687
+ )
688
+ pre_all_gather_signature = inspect.signature(
689
+ sharded_local_tensor.fsdp_pre_all_gather
690
+ )
691
+ num_fn_params = len(pre_all_gather_signature.parameters)
692
+ # Old signature only passes mesh; keep for BC for now
693
+ assert num_fn_params in (
694
+ 1,
695
+ 5,
696
+ ), (
697
+ f"Invalid fsdp_pre_all_gather: {pre_all_gather_signature}\n"
698
+ "Expects fsdp_pre_all_gather(self, mesh: DeviceMesh, "
699
+ "module: nn.Module, mp_policy: MixedPrecisionPolicy)"
700
+ )
701
+ if num_fn_params == 1:
702
+ (
703
+ all_gather_inputs,
704
+ self._extensions_data.all_gather_metadata,
705
+ ) = sharded_local_tensor.fsdp_pre_all_gather(
706
+ self.shard_mesh_from_root
707
+ )
708
+ else:
709
+ (
710
+ all_gather_inputs,
711
+ self._extensions_data.all_gather_metadata,
712
+ ) = sharded_local_tensor.fsdp_pre_all_gather(
713
+ self.shard_mesh_from_root,
714
+ self._orig_size,
715
+ self._contiguous_orig_stride,
716
+ self._module_info.module,
717
+ self.mp_policy,
718
+ )
719
+ if (
720
+ sharded_local_tensor.size() != self.padded_sharded_param_size
721
+ and any(
722
+ all_gather_input.size() != self.padded_sharded_param_size
723
+ for all_gather_input in all_gather_inputs
724
+ )
725
+ ):
726
+ # NOTE: Since this error can only be raised on the
727
+ # ranks that have padding, this can manifest as a NCCL
728
+ # watchdog timeout, as the other ranks will not error.
729
+ raise AssertionError(
730
+ "When a parameter is unevenly sharded by FSDP "
731
+ f"(orig size={self._orig_size}, FSDP world size={self.mesh_info.mesh.size()}), "
732
+ "fsdp_pre_all_gather must return all-gather inputs with the padded sharded size "
733
+ f"{self.padded_sharded_param_size} but got {[t.size() for t in all_gather_inputs]}"
734
+ )
735
+ self._extensions_data.all_gather_input_sizes = [
736
+ t.size() for t in all_gather_inputs
737
+ ]
738
+ return [t.view(-1) for t in all_gather_inputs]
739
+ sharded_param_data = self._sharded_param_data
740
+ if self.offload_to_cpu:
741
+ sharded_param_data = sharded_param_data.to(
742
+ self.device, non_blocking=True
743
+ )
744
+ return [_to_dtype_if_needed(sharded_param_data, self.param_dtype)]
745
+ elif self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
746
+ if not compiled_autograd_enabled() and hasattr(
747
+ self._sharded_local_tensor, "fsdp_pre_all_gather"
748
+ ):
749
+ raise NotImplementedError
750
+ all_gather_input = _to_dtype_if_needed(
751
+ cast(torch.Tensor, self._sharded_post_forward_param_data),
752
+ self.param_dtype,
753
+ )
754
+ return [all_gather_input]
755
+ return [torch.empty(0)] # mypy
756
+
757
+ @property
758
+ def unsharded_param(self) -> nn.Parameter: # ND
759
+ return self._unsharded_param
760
+
761
+ @property
762
+ def unsharded_grad_data(self) -> torch.Tensor:
763
+ grad = self.unsharded_param.grad
764
+ assert grad is not None, "Expects unsharded_param.grad to not be None"
765
+ return self._get_grad_inner_tensor(grad)
766
+
767
+ @property
768
+ def unsharded_accumulated_grad_data(self) -> torch.Tensor:
769
+ grad = self.unsharded_accumulated_grad
770
+ assert grad is not None, "Expects unsharded_accumulated_grad to not be None"
771
+ return self._get_grad_inner_tensor(grad)
772
+
773
+ def _get_grad_inner_tensor(self, grad: torch.Tensor) -> torch.Tensor:
774
+ if self.is_dtensor:
775
+ if isinstance(grad, AsyncCollectiveTensor):
776
+ grad = grad.wait()
777
+ assert isinstance(grad, DTensor), f"{type(grad)}"
778
+ placements = self._tp_spec.placements
779
+ if placements != grad.placements:
780
+ assert len(self._tp_spec.placements) == len(grad.placements), (
781
+ f"{self._tp_spec=} {grad.placements=}"
782
+ )
783
+ grad = grad.redistribute(placements=placements)
784
+ grad = grad._local_tensor
785
+ return grad
786
+
787
+ @property
788
+ def _sharded_local_tensor(self) -> torch.Tensor:
789
+ return cast(DTensor, self.sharded_param)._local_tensor
790
+
791
+ @property
792
+ def shard_mesh(self):
793
+ mesh = self.mesh_info.mesh
794
+ if mesh.ndim == 1:
795
+ return mesh
796
+ elif mesh.ndim == 2:
797
+ assert mesh.mesh_dim_names is not None
798
+ return mesh[mesh.mesh_dim_names[-1]]
799
+ raise ValueError(f"Invalid mesh: {mesh}")
800
+
801
+ @property
802
+ def shard_mesh_from_root(self):
803
+ mesh = self.mesh_info.mesh
804
+
805
+ if mesh.ndim == 1:
806
+ return mesh
807
+ else:
808
+ assert mesh.mesh_dim_names is not None
809
+ shard_dim_name = mesh.mesh_dim_names[-1]
810
+
811
+ root_mesh = _mesh_resources.get_root_mesh(mesh)
812
+ return root_mesh[shard_dim_name]
813
+
814
+ def _assert_in_states(self, *states: ShardedState) -> None:
815
+ if self.sharded_state not in states:
816
+ _raise_assert_with_print(
817
+ f"Expects to be in one of {states}, not {self.sharded_state}"
818
+ )
819
+
820
+ def reset_sharded_param(self):
821
+ # For ops like `nn.Module._apply` or `load_state_dict(assign=True)`
822
+ # that change the sharded parameter tensor, we may need to re-pad the
823
+ # sharded local tensor and re-save the reference.
824
+ module_info = self._module_info
825
+ new_param = getattr(module_info.module, module_info.param_name)
826
+ if new_param is not self.sharded_param:
827
+ if torch.__future__.get_swap_module_params_on_conversion():
828
+ raise AssertionError(
829
+ f"Expects swap_tensors to preserve object but got {new_param} "
830
+ f"instead of {self.sharded_param}"
831
+ )
832
+ self.sharded_param = new_param
833
+ local_tensor = new_param._local_tensor
834
+ if local_tensor.is_meta:
835
+ return
836
+ updated_local_tensor = False
837
+ padded_sharded_size = self.padded_sharded_param_size
838
+ shard_dim = self.fsdp_placement.dim
839
+ length = local_tensor.size(shard_dim) if local_tensor.numel() > 0 else 0
840
+ if local_tensor.size() != padded_sharded_size:
841
+ assert shard_dim == 0, (
842
+ f"Shard({shard_dim}) requires even sharding: {local_tensor.size()=}"
843
+ )
844
+ padded_local_tensor = local_tensor.new_zeros(padded_sharded_size)
845
+ padded_local_tensor.narrow(dim=shard_dim, start=0, length=length).copy_(
846
+ local_tensor
847
+ )
848
+ local_tensor = padded_local_tensor
849
+ updated_local_tensor = True
850
+ if self.pin_memory and not local_tensor.is_pinned():
851
+ local_tensor = local_tensor.cpu().pin_memory(device=self.device)
852
+ updated_local_tensor = True
853
+ self._sharded_param_data = local_tensor.view(-1)
854
+ assert isinstance(self.sharded_param, DTensor) # mypy
855
+ if updated_local_tensor:
856
+ # Only change the local tensor object if needed
857
+ self.sharded_param._local_tensor = local_tensor.narrow(
858
+ dim=shard_dim, start=0, length=length
859
+ )
860
+ assert self.sharded_param._local_tensor.is_contiguous()
861
+ self._sharding_spec = self.sharded_param._spec
862
+
863
+ def __repr__(self):
864
+ return f"FSDPParam(fqn={self._param_fqn}, orig_size={self._orig_size})"
865
+
866
+
867
+ def alloc_storage(tensor: torch.Tensor) -> None:
868
+ size = tensor.numel() * tensor.itemsize
869
+ if (storage := tensor.untyped_storage()).size() != size:
870
+ storage.resize_(size)
871
+
872
+
873
+ def free_storage(tensor: torch.Tensor) -> None:
874
+ if (storage := tensor.untyped_storage()).size() != 0:
875
+ storage.resize_(0)
876
+
877
+
878
+ # NOTE: These bypass `nn.Module.__setattr__` checks, which incur non-trivial
879
+ # CPU overhead, if the module did not override it. For FSDP, we know we do not
880
+ # need those checks when transitioning between sharded/unsharded parameters.
881
+ def unsafe_setattr_param(
882
+ module: nn.Module, param_name: str, param: nn.Parameter
883
+ ) -> None:
884
+ if getattr(module.__setattr__, "__func__", None) is nn.Module.__setattr__:
885
+ module._parameters[param_name] = param
886
+ else: # slow path
887
+ setattr(module, param_name, param)
888
+
889
+
890
+ def set_requires_grad_if_needed(
891
+ src_tensor: torch.Tensor, dst_tensor: torch.Tensor
892
+ ) -> None:
893
+ # Only call `requires_grad_` if needed to avoid the Python <> C++ context
894
+ # switch overhead
895
+ if src_tensor.requires_grad != dst_tensor.requires_grad:
896
+ dst_tensor.requires_grad_(src_tensor.requires_grad)
_fsdp_param_group.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import contextlib
3
+ import logging
4
+ from typing import Any, Callable, cast, NamedTuple, Optional
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ import torch.nn as nn
9
+ from torch.distributed.device_mesh import _get_device_handle
10
+ from torch.distributed.fsdp._common_utils import _named_parameters_with_duplicates
11
+ from torch.distributed.tensor import Shard
12
+ from torch.profiler import record_function
13
+ from torch.utils._pytree import tree_flatten, tree_unflatten
14
+ from torch.utils.hooks import RemovableHandle
15
+
16
+ from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
17
+ from ._fsdp_collectives import (
18
+ AllGatherResult,
19
+ foreach_all_gather,
20
+ foreach_all_gather_copy_out,
21
+ foreach_reduce,
22
+ )
23
+ from ._fsdp_common import (
24
+ compiled_autograd_enabled,
25
+ FSDPMeshInfo,
26
+ HSDPMeshInfo,
27
+ TrainingState,
28
+ )
29
+ from ._fsdp_param import FSDPParam, ParamModuleInfo, ShardedState
30
+
31
+
32
+ logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
33
+
34
+ _ModuleToHandleDict = dict[nn.Module, RemovableHandle] # for state dict
35
+
36
+
37
+ """
38
+ [Note: Overlapping all-gather copy-in and all-gather]
39
+ For implicit forward prefetching, we want to overlap the next copy-in with the
40
+ current all-gather. We do so using a separate copy-in stream. However, since
41
+ we have the all-gather input as a view into the output, we must make sure to
42
+ copy into different memory from the current all-gather's output. Thus, we keep
43
+ a reference to the current all-gather's output and have the next FSDP parameter
44
+ group free it after its copy-in. Finally, we have the last FSDP state flush the
45
+ reference to avoid holding onto memory after forward.
46
+ """
47
+
48
+
49
+ class FSDPCommContext:
50
+ """This has the communication state shared across FSDP states/parameter groups."""
51
+
52
+ def lazy_init(self, device: torch.device):
53
+ self.device_handle = _get_device_handle(device.type)
54
+ # Setting the all-gather/reduce-scatter streams to be higher priority
55
+ # can help avoid some issues where their copies in/out are delayed and
56
+ # block computation (this is different from high-pri NCCL streams)
57
+ high_priority = -1
58
+ # All-gather state and copy-in stream allow overlapping the next
59
+ # copy-in with the current all-gather in forward; copy-in overlaps with
60
+ # reduce-scatter in backward without the separate copy-in stream
61
+ self.all_gather_copy_in_stream = self.device_handle.Stream(
62
+ priority=high_priority
63
+ )
64
+ # All-gather stream allows overlapping next all-gather with current
65
+ # forward compute
66
+ self.all_gather_stream = self.device_handle.Stream(priority=high_priority)
67
+ # Reduce-scatter stream gives separate execution "thread" for post-
68
+ # backward logic like pre/post-gradient division and reduce-scatter
69
+ self.reduce_scatter_stream = self.device_handle.Stream(priority=high_priority)
70
+ # Run the HSDP all-reduces concurrently with all-gather/reduce-scatter
71
+ # since collectives use different network resources and can overlap
72
+ # in the typical intra-node sharding / inter-node replication case
73
+ self.all_reduce_stream = self.device_handle.Stream()
74
+ # All-gather/reduce-scatter states keep references to collective
75
+ # tensors produced in one stream and used in another and accompanying
76
+ # CUDA events for synchronization
77
+ self.all_gather_state: Optional[AllGatherState] = None
78
+ self.reduce_scatter_state: Optional[ReduceScatterState] = None
79
+ # Post-forward order for explicit backward prefetching
80
+ self.post_forward_order: list[FSDPParamGroup] = [] # will cause ref cycles
81
+
82
+ def get_all_gather_streams(
83
+ self, async_op: bool, training_state: TrainingState
84
+ ) -> tuple[torch.Stream, torch.Stream]:
85
+ if not async_op and training_state in (
86
+ TrainingState.FORWARD,
87
+ TrainingState.PRE_BACKWARD,
88
+ ):
89
+ # Use separate streams for implicit prefetching
90
+ return self.all_gather_copy_in_stream, self.all_gather_stream
91
+ current_stream = self.device_handle.current_stream()
92
+ return current_stream, current_stream
93
+
94
+
95
+ # See [Note: Overlapping all-gather copy-in and all-gather]
96
+ class AllGatherState(NamedTuple):
97
+ all_gather_result: AllGatherResult
98
+ event: Optional[torch.Event] # all-gather copy-out
99
+
100
+
101
+ class ReduceScatterState(NamedTuple):
102
+ reduce_scatter_input: torch.Tensor
103
+ event: Optional[torch.Event] # reduce-scatter event
104
+
105
+
106
+ class AllReduceState(NamedTuple):
107
+ all_reduce_input: torch.Tensor
108
+ event: Optional[torch.Event] # all-reduce event
109
+
110
+
111
+ class FSDPParamGroup:
112
+ """This class represents a parameter group to communicate together."""
113
+
114
+ _orig_dtype: Optional[torch.dtype]
115
+ _reduce_dtype: Optional[torch.dtype]
116
+
117
+ def __init__(
118
+ self,
119
+ params: list[nn.Parameter],
120
+ modules: tuple[nn.Module, ...],
121
+ mesh_info: FSDPMeshInfo,
122
+ post_forward_mesh_info: Optional[FSDPMeshInfo],
123
+ device: torch.device,
124
+ shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]],
125
+ mp_policy: MixedPrecisionPolicy,
126
+ offload_policy: OffloadPolicy,
127
+ ):
128
+ self.modules = modules # permit ref cycle because 1:1 lifetime
129
+ param_module_infos = _get_param_module_infos(params, modules)
130
+
131
+ self.fsdp_params = [
132
+ FSDPParam(
133
+ param,
134
+ module_info,
135
+ mesh_info,
136
+ post_forward_mesh_info,
137
+ device,
138
+ shard_placement_fn,
139
+ mp_policy,
140
+ offload_policy,
141
+ )
142
+ for param, module_info in zip(params, param_module_infos)
143
+ ]
144
+ self.mesh_info = mesh_info
145
+ self.post_forward_mesh_info = post_forward_mesh_info
146
+ self.device = device
147
+ self.device_handle = _get_device_handle(device.type)
148
+ self.mp_policy = mp_policy
149
+ self.offload_policy = offload_policy
150
+ self._training_state = TrainingState.IDLE
151
+ # Group's sharded state always matches its parameters' sharded states
152
+ self._sharded_state = ShardedState.SHARDED
153
+ self._module_fqn: Optional[str] = None # prefixed from root module
154
+ # Only consider resetting sharded parameters once in lazy init since it
155
+ # can incur nontrivial overhead to reset them
156
+ self._reset_sharded_params: bool = False
157
+
158
+ # - Hook state
159
+ self._module_to_pre_save_state_dict_hook_handle: _ModuleToHandleDict = {}
160
+ self._module_to_pre_load_state_dict_hook_handle: _ModuleToHandleDict = {}
161
+ self._all_reduce_hook: Optional[Callable[[torch.Tensor], None]] = None
162
+ # Optional stream to run the user-defined all-reduce hook in
163
+ # Saved here and not in the comm. context because we allow the user to
164
+ # specify it, possibly at construction time before lazy init
165
+ self._all_reduce_hook_stream: Optional[torch.cuda.Stream] = None
166
+
167
+ # - Communication and communication/computation overlap
168
+ self.comm_ctx = FSDPCommContext()
169
+ # Group's indices in the shared post-forward order
170
+ self._post_forward_indices: list[int] = []
171
+ # Whether to reduce gradients at all (whether for FSDP or HSDP)
172
+ self.reduce_grads: bool = True
173
+ # Whether to all-reduce gradients for HSDP; only used if
174
+ # `self.reduce_grads` is true, in which case setting this to false
175
+ # means reduce-scatter but no all-reduce
176
+ self.all_reduce_grads: bool = True
177
+ # Whether to reshard parameters after backward (only useful for
178
+ # gradient accumulation)
179
+ self.reshard_after_backward: bool = True
180
+ # Optional custom factor for the gradient reduction op (e.g. to divide
181
+ # by a factor other than the world size)
182
+ self.gradient_divide_factor: Optional[float] = None
183
+ # Whether reduce-scatter and all-reduce should be issued using only
184
+ # summations, potentially with separate pre-/post-scaling.
185
+ self.force_sum_reduction_for_comms: bool = False
186
+ # `async_op` arg used for pre-forward/pre-backward unshard; can be
187
+ # overridden to only do explicit prefetching and avoid inter-stream
188
+ # fragmentation from using separate unshard streams
189
+ self.unshard_async_op: bool = False
190
+ # Whether to unshard in backward: can be overridden by the user if the
191
+ # parameters in this group are not needed for backward (e.g. embedding)
192
+ self.unshard_in_backward: bool = True
193
+ # Whether to (try to) use the ProcessGroup's allocate_tensor method for
194
+ # the staging buffers for collective comms.
195
+ self.allocate_memory_from_process_group = False
196
+
197
+ # - CUDA events for stream synchronization
198
+ # Holds the all-gather output buffer, sync objects, and metadata
199
+ self._all_gather_result: Optional[AllGatherResult] = None
200
+ # Holds the reduce-scatter/all-reduce view-out CUDA event that marks the end of
201
+ # the group's post-backward (e.g. reduce-scatter, all-reduce and div), which
202
+ # should be waited on at the end of backward
203
+ self._post_reduce_event: Optional[torch.Event] = None
204
+ # Holds the reshard-after-forward CUDA event when resharding to a
205
+ # different world size, which should be waited on in the next unshard
206
+ self._reshard_after_forward_event: Optional[torch.Event] = None
207
+
208
+ # Only for HSDP, if accumulating gradients without all-reduce, save the
209
+ # partial reduce output (only reduce-scattered but not all-reduced)
210
+ self._partial_reduce_output: Optional[torch.Tensor] = None
211
+ # Holds the all-reduce input and all-reduce event to keep it alive
212
+ # until the end of backward (critical when doing bf16 reduction with
213
+ # fp32 parameters since the all-reduce input is allocated in the RS
214
+ # stream and will have no refs to it after being upcast to fp32)
215
+ self._all_reduce_state: Optional[AllReduceState] = None
216
+
217
+ # Initialization #
218
+ def _init_mp_dtypes(self) -> None:
219
+ for fsdp_param in self.fsdp_params:
220
+ fsdp_param.init_dtype_attrs(self.mp_policy)
221
+ trainable_params: list[FSDPParam] = [
222
+ p for p in self.fsdp_params if p.sharded_param.requires_grad
223
+ ]
224
+ orig_dtypes = {p.orig_dtype for p in trainable_params}
225
+ reduce_dtypes = {p.reduce_dtype for p in trainable_params}
226
+ if len(trainable_params) > 0 and len(orig_dtypes) != 1:
227
+ # Models may have no grad params
228
+ raise AssertionError(
229
+ f"FSDP expects uniform original parameter dtype but got {orig_dtypes}"
230
+ )
231
+ self._orig_dtype = next(iter(orig_dtypes)) if len(trainable_params) else None
232
+ if len(trainable_params) > 0 and len(reduce_dtypes) != 1:
233
+ # This can be relaxed if we issue one reduce-scatter per reduce
234
+ # dtype (but we would need a way for users to specify multiple
235
+ # reduce dtypes)
236
+ raise AssertionError(
237
+ f"FSDP expects uniform reduce dtype but got {reduce_dtypes}"
238
+ )
239
+ self._reduce_dtype = (
240
+ next(iter(reduce_dtypes)) if len(trainable_params) else None
241
+ )
242
+
243
+ def lazy_init(self):
244
+ # Lazy init should be idempotent
245
+ # Users may change or register parameters after construction time.
246
+ # For example, DoRA (https://arxiv.org/abs/2402.09353) initializes linear magnitudes based on
247
+ # other parameters (e.g. loaded from the state dict).
248
+ if not hasattr(self.comm_ctx, "device_handle"):
249
+ self.comm_ctx.device_handle = _get_device_handle(self.device.type)
250
+ if self.is_sharded and not self._reset_sharded_params:
251
+ for fsdp_param in self.fsdp_params:
252
+ fsdp_param.reset_sharded_param()
253
+ fsdp_param._init_extensions() # allow monkey patch after init
254
+ self._reset_sharded_params = True
255
+ self._validate_no_meta_params()
256
+ self._validate_cpu_offload_params()
257
+ # Initialize mixed precision attributes lazily in case the user changes
258
+ # the parameter dtypes after construction time but before forward
259
+ self._init_mp_dtypes()
260
+ self._register_state_dict_hooks()
261
+
262
+ # Runtime #
263
+ def unshard(self, async_op: bool = False):
264
+ if self._all_gather_result is not None: # already called, pending wait
265
+ return
266
+ if self.is_unsharded:
267
+ return # no-op
268
+ if (
269
+ not self.unshard_in_backward
270
+ and self._training_state == TrainingState.PRE_BACKWARD
271
+ ):
272
+ return
273
+ if self._reshard_after_forward_event is not None:
274
+ # Resharded parameter data is allocated in the default stream and
275
+ # used in the all-gather streams
276
+ self._wait_all_gather_streams_on_event(self._reshard_after_forward_event)
277
+ self._reshard_after_forward_event = None
278
+ with record_function(self._with_fqn("FSDP::all_gather")):
279
+ self._all_gather_result = foreach_all_gather(
280
+ self.fsdp_params,
281
+ self._all_gather_process_group,
282
+ async_op,
283
+ *self.comm_ctx.get_all_gather_streams(async_op, self._training_state),
284
+ self.device,
285
+ self.allocate_memory_from_process_group,
286
+ )
287
+
288
+ def wait_for_unshard(self):
289
+ """
290
+ 1. In forward with implicit prefetching, to overlap the current copy-out
291
+ with the next all-gather, we save a reference to the current all-gather
292
+ result to free after the next copy-out.
293
+ 2. Otherwise (explicit prefetching or in backward), we free the
294
+ all-gather result immediately after the current copy-out since we can
295
+ already overlap the current copy-out with the previous reduce-scatter.
296
+ """
297
+ if not self._all_gather_result:
298
+ return # no preceding unshard
299
+ async_op = self._all_gather_result.all_gather_work is not None
300
+ if self._training_state == TrainingState.FORWARD: # implicit prefetch
301
+ if prev_all_gather_state := self.comm_ctx.all_gather_state:
302
+ self._wait_all_gather_streams_on_event(prev_all_gather_state.event)
303
+ self.comm_ctx.all_gather_state = None # free the all-gather result
304
+ with record_function(self._with_fqn("FSDP::all_gather_copy_out")):
305
+ foreach_all_gather_copy_out(
306
+ self._all_gather_result,
307
+ self.fsdp_params,
308
+ self._all_gather_process_group,
309
+ )
310
+ for fsdp_param in self.fsdp_params:
311
+ fsdp_param.init_unsharded_param()
312
+ self._to_unsharded()
313
+ all_gather_copy_out_event = self.device_handle.Event()
314
+ all_gather_copy_out_event.record()
315
+ if not async_op and self._training_state == TrainingState.FORWARD:
316
+ # Defer free to allow for overlap of this copy-out with next
317
+ # all-gather collective
318
+ self.comm_ctx.all_gather_state = AllGatherState(
319
+ self._all_gather_result, all_gather_copy_out_event
320
+ )
321
+ else:
322
+ self._wait_all_gather_streams_on_event(all_gather_copy_out_event)
323
+ self._all_gather_result = None # free unless saved in `all_gather_state`
324
+
325
+ def _wait_all_gather_streams_on_event(self, event: Optional[torch.Event]):
326
+ # Calling `unshard` before lazy init means streams are not initialized
327
+ if hasattr(self.comm_ctx, "all_gather_copy_in_stream") and event is not None:
328
+ self.comm_ctx.all_gather_copy_in_stream.wait_event(event)
329
+ if hasattr(self.comm_ctx, "all_gather_stream") and event is not None:
330
+ self.comm_ctx.all_gather_stream.wait_event(event)
331
+
332
+ def reshard(self):
333
+ if self._training_state == TrainingState.FORWARD:
334
+ if not self._reshard_after_forward:
335
+ return
336
+ if self._use_post_forward_mesh:
337
+ self._to_sharded_post_forward()
338
+ self._reshard_after_forward_event = self.device_handle.Event()
339
+ if self._reshard_after_forward_event is not None:
340
+ self._reshard_after_forward_event.record()
341
+ return
342
+ self._to_sharded()
343
+
344
+ def pre_forward(
345
+ self, module: nn.Module, args: tuple[Any, ...], kwargs: dict[str, Any]
346
+ ) -> tuple[tuple[Any, ...], dict[str, Any]]:
347
+ if not compiled_autograd_enabled():
348
+ logger.debug("%s", self._with_fqn("FSDP::pre_forward"))
349
+ with record_function(self._with_fqn("FSDP::pre_forward")):
350
+ self._training_state = TrainingState.FORWARD
351
+ self.unshard(self.unshard_async_op)
352
+ self.wait_for_unshard()
353
+ args, kwargs = self._register_post_backward_hook(args, kwargs)
354
+ return args, kwargs
355
+
356
+ def post_forward(self, module: nn.Module, input: Any, output: Any):
357
+ if not compiled_autograd_enabled():
358
+ logger.debug("%s", self._with_fqn("FSDP::post_forward"))
359
+ with record_function(self._with_fqn("FSDP::post_forward")):
360
+ self.reshard()
361
+ self._record_post_forward()
362
+ self._training_state = TrainingState.IDLE
363
+ return output
364
+
365
+ def _record_post_forward(self) -> None:
366
+ # Since a group has one pre-backward unshard for each forward call
367
+ # before the backward, we record each usage (with multiplicity)
368
+ post_forward_index = len(self.comm_ctx.post_forward_order)
369
+ self.comm_ctx.post_forward_order.append(self)
370
+ self._post_forward_indices.append(post_forward_index)
371
+
372
+ def pre_backward(self, default_prefetch: bool, *unused: Any):
373
+ if (
374
+ compiled_autograd_enabled()
375
+ and self._training_state == TrainingState.PRE_BACKWARD
376
+ ):
377
+ # Traceable FSDP2 cannot trigger the param group's `post_backward` immediately after param usage;
378
+ # instead it relies on this to trigger the previously unexecuted `post_backward`.
379
+ self.post_backward()
380
+ if self._training_state == TrainingState.PRE_BACKWARD:
381
+ return
382
+ if not compiled_autograd_enabled():
383
+ logger.debug("%s", self._with_fqn("FSDP::pre_backward"))
384
+ with record_function(self._with_fqn("FSDP::pre_backward")):
385
+ self._training_state = TrainingState.PRE_BACKWARD
386
+ self.unshard(self.unshard_async_op) # no-op if prefetched
387
+ self.wait_for_unshard()
388
+ if default_prefetch and not compiled_autograd_enabled():
389
+ self._backward_prefetch()
390
+
391
+ def post_backward(self, *unused: Any):
392
+ # This method should be idempotent and safe to call even when this
393
+ # FSDP parameter group was not used in backward (should be a no-op)
394
+ if not compiled_autograd_enabled():
395
+ logger.debug("%s", self._with_fqn("FSDP::post_backward"))
396
+ self._training_state = TrainingState.POST_BACKWARD
397
+ with record_function(self._with_fqn("FSDP::post_backward_accumulate")):
398
+ for fsdp_param in self.fsdp_params:
399
+ fsdp_param.accumulate_unsharded_grad_if_needed()
400
+ with record_function(self._with_fqn("FSDP::post_backward_reshard")):
401
+ if not self.reduce_grads:
402
+ if self.reshard_after_backward:
403
+ self.reshard()
404
+ for fsdp_param in self.fsdp_params:
405
+ fsdp_param.to_accumulated_grad_if_needed()
406
+ return
407
+ # Save the autograd-computed gradients before resharding to only
408
+ # access the unsharded parameters when their data is present
409
+ fsdp_params_with_grad: list[FSDPParam] = []
410
+ unsharded_grads: list[torch.Tensor] = []
411
+ for fsdp_param in self.fsdp_params:
412
+ if not hasattr(fsdp_param, "_unsharded_param"):
413
+ continue
414
+ # May have an accumulated gradient of the reduce dtype if the
415
+ # previous backward did not reduce-scatter
416
+ if fsdp_param.unsharded_accumulated_grad is not None:
417
+ fsdp_params_with_grad.append(fsdp_param)
418
+ unsharded_grads.append(fsdp_param.unsharded_accumulated_grad_data)
419
+ fsdp_param.unsharded_accumulated_grad = None
420
+ elif fsdp_param.unsharded_param.grad is not None:
421
+ fsdp_params_with_grad.append(fsdp_param)
422
+ unsharded_grads.append(fsdp_param.unsharded_grad_data)
423
+ fsdp_param.unsharded_param.grad = None
424
+ if self.reshard_after_backward:
425
+ self.reshard()
426
+ if len(fsdp_params_with_grad) == 0:
427
+ return
428
+ with record_function(self._with_fqn("FSDP::post_backward_reduce")):
429
+ if (
430
+ self.comm_ctx.reduce_scatter_state is not None
431
+ and self.comm_ctx.reduce_scatter_state.event is not None
432
+ ):
433
+ self.device_handle.current_stream().wait_event(
434
+ self.comm_ctx.reduce_scatter_state.event
435
+ )
436
+ self.comm_ctx.reduce_scatter_state = None
437
+ all_reduce_pg = self._all_reduce_process_group if self._is_hsdp else None
438
+ all_reduce_stream: torch.cuda.Stream
439
+ if all_reduce_pg is None and self._all_reduce_hook_stream is not None:
440
+ # this means the native HSDP is not enabled,
441
+ # but user may want to have a custom HSDP setup
442
+ assert self._all_reduce_hook is not None, (
443
+ "all reduce hook stream is specified but hook itself is missing."
444
+ )
445
+ all_reduce_stream = self._all_reduce_hook_stream
446
+ else:
447
+ all_reduce_stream = self.comm_ctx.all_reduce_stream
448
+
449
+ self._wait_for_post_backward()
450
+ (
451
+ reduce_scatter_input,
452
+ reduce_scatter_event,
453
+ self._post_reduce_event,
454
+ all_reduce_input,
455
+ all_reduce_event,
456
+ self._partial_reduce_output,
457
+ ) = foreach_reduce(
458
+ fsdp_params_with_grad,
459
+ unsharded_grads,
460
+ self._reduce_scatter_process_group,
461
+ self.comm_ctx.reduce_scatter_stream,
462
+ self._orig_dtype,
463
+ self._reduce_dtype,
464
+ self.device,
465
+ self.gradient_divide_factor,
466
+ self._all_reduce_process_group if self._is_hsdp else None,
467
+ all_reduce_stream,
468
+ self.all_reduce_grads,
469
+ self._partial_reduce_output,
470
+ self._all_reduce_hook,
471
+ self.allocate_memory_from_process_group,
472
+ self.force_sum_reduction_for_comms,
473
+ )
474
+ self.comm_ctx.reduce_scatter_state = ReduceScatterState(
475
+ reduce_scatter_input, reduce_scatter_event
476
+ )
477
+ if all_reduce_input is not None:
478
+ if self.device.type != "cpu":
479
+ assert all_reduce_event is not None
480
+ self._all_reduce_state = AllReduceState(
481
+ all_reduce_input, all_reduce_event
482
+ )
483
+
484
+ def finalize_backward(self):
485
+ self._wait_for_post_backward()
486
+ for fsdp_param in self.fsdp_params:
487
+ if fsdp_param.grad_offload_event is not None:
488
+ fsdp_param.grad_offload_event.synchronize()
489
+ fsdp_param.grad_offload_event = None
490
+ if self._all_gather_result is not None:
491
+ # If there was a mistargeted unshard without a corresponding wait,
492
+ # then we wait here and clear the unshard
493
+ if (event := self._all_gather_result.all_gather_event) is not None:
494
+ torch.accelerator.current_stream().wait_event(event)
495
+ work = self._all_gather_result.all_gather_work
496
+ if isinstance(work, dist.distributed_c10d.Work):
497
+ work.wait()
498
+ self._all_gather_result = None
499
+ self._post_forward_indices.clear()
500
+
501
+ def _wait_for_post_backward(self):
502
+ if self._post_reduce_event is not None:
503
+ self.device_handle.current_stream().wait_event(self._post_reduce_event)
504
+ self._post_reduce_event = None
505
+ if (
506
+ self._all_reduce_state is not None
507
+ and self._all_reduce_state.event is not None
508
+ ):
509
+ self.device_handle.current_stream().wait_event(self._all_reduce_state.event)
510
+ self._all_reduce_state = None
511
+
512
+ def _backward_prefetch(self) -> None:
513
+ if self._training_state == TrainingState.PRE_BACKWARD:
514
+ if not self._post_forward_indices:
515
+ # Can be cleared if running multiple `backward`s
516
+ return
517
+ curr_index = self._post_forward_indices.pop()
518
+ if (target_index := curr_index - 1) < 0:
519
+ return
520
+ # Prefetch naively using the reverse post-forward order, which may
521
+ # have mistargeted prefetches if not all modules used in forward
522
+ # are used in this backward
523
+ target_fsdp_param_group = self.comm_ctx.post_forward_order[target_index]
524
+ self._prefetch_unshard(target_fsdp_param_group, "backward")
525
+
526
+ @staticmethod
527
+ def _prefetch_unshard(
528
+ target_fsdp_param_group: "FSDPParamGroup", pass_type: str
529
+ ) -> None:
530
+ if pass_type == "backward":
531
+ training_state = TrainingState.PRE_BACKWARD
532
+ elif pass_type == "forward":
533
+ training_state = TrainingState.FORWARD
534
+ else:
535
+ raise ValueError(f"Unknown pass type: {pass_type}")
536
+ target_fqn = target_fsdp_param_group._module_fqn
537
+ with (
538
+ record_function(f"FSDP::{pass_type}_prefetch for {target_fqn}"),
539
+ target_fsdp_param_group.use_training_state(training_state),
540
+ ):
541
+ async_op = target_fsdp_param_group.unshard_async_op
542
+ target_fsdp_param_group.unshard(async_op)
543
+
544
+ # Utilities #
545
+ def _to_sharded(self):
546
+ if not self.is_sharded:
547
+ for fsdp_param in self.fsdp_params:
548
+ fsdp_param.to_sharded()
549
+ self._sharded_state = ShardedState.SHARDED
550
+
551
+ def _to_sharded_post_forward(self):
552
+ if not self.is_sharded_post_forward:
553
+ for fsdp_param in self.fsdp_params:
554
+ fsdp_param.to_sharded_post_forward()
555
+ self._sharded_state = ShardedState.SHARDED_POST_FORWARD
556
+
557
+ def _to_unsharded(self):
558
+ if not self.is_unsharded:
559
+ for fsdp_param in self.fsdp_params:
560
+ fsdp_param.to_unsharded()
561
+ self._sharded_state = ShardedState.UNSHARDED
562
+
563
+ @property
564
+ def is_sharded(self) -> bool:
565
+ return self._sharded_state == ShardedState.SHARDED
566
+
567
+ @property
568
+ def is_sharded_post_forward(self) -> bool:
569
+ return self._sharded_state == ShardedState.SHARDED_POST_FORWARD
570
+
571
+ @property
572
+ def is_unsharded(self) -> bool:
573
+ return self._sharded_state == ShardedState.UNSHARDED
574
+
575
+ @contextlib.contextmanager
576
+ def use_training_state(self, training_state: TrainingState):
577
+ old_training_state = self._training_state
578
+ self._training_state = training_state
579
+ try:
580
+ yield
581
+ finally:
582
+ self._training_state = old_training_state
583
+
584
+ # Hook Registration #
585
+ def _register_post_backward_hook(
586
+ self, args: tuple[Any, ...], kwargs: dict[str, Any]
587
+ ) -> tuple[tuple[Any, ...], dict[str, Any]]:
588
+ # Traceable FSDP2 relies on `root_post_backward_callback` to call each
589
+ # `FSDPParamGroup.post_backward`
590
+ if (not torch._dynamo.config.skip_fsdp_hooks) or compiled_autograd_enabled():
591
+ return args, kwargs
592
+ if not torch.is_grad_enabled():
593
+ return args, kwargs
594
+ args_list, args_spec = tree_flatten(args)
595
+ kwargs_list, kwargs_spec = tree_flatten(kwargs)
596
+ args_kwargs_list = list(args_list) + list(kwargs_list)
597
+ inp_tensor_indices: list[int] = []
598
+ inp_tensors: list[torch.Tensor] = []
599
+ for i, obj in enumerate(args_kwargs_list):
600
+ if torch.is_tensor(obj) and obj.requires_grad:
601
+ inp_tensor_indices.append(i)
602
+ inp_tensors.append(obj)
603
+ if len(inp_tensors) == 0:
604
+ return args, kwargs # no tensors that require gradients
605
+ inp_tensors = RegisterPostBackwardFunction.apply(self, *inp_tensors)
606
+ for inp_tensor_idx, inp_tensor in zip(inp_tensor_indices, inp_tensors):
607
+ args_kwargs_list[inp_tensor_idx] = inp_tensor
608
+ args_list = args_kwargs_list[: len(args_list)]
609
+ kwargs_list = args_kwargs_list[len(args_list) :]
610
+ args = tree_unflatten(args_list, args_spec)
611
+ kwargs = tree_unflatten(kwargs_list, kwargs_spec)
612
+ return args, kwargs
613
+
614
+ def _register_state_dict_hooks(self) -> None:
615
+ num_pre_save_hooks = len(self._module_to_pre_save_state_dict_hook_handle)
616
+ num_pre_load_hooks = len(self._module_to_pre_load_state_dict_hook_handle)
617
+ assert num_pre_save_hooks == num_pre_load_hooks, (
618
+ f"Pre-save: {num_pre_save_hooks} pre-load: {num_pre_load_hooks}"
619
+ )
620
+ if num_pre_save_hooks > 0:
621
+ return # already registered
622
+ modules_with_fsdp_params: set[nn.Module] = {
623
+ fsdp_param._module_info.module for fsdp_param in self.fsdp_params
624
+ }
625
+
626
+ def to_sharded_hook(*args: Any, **kwargs: Any) -> None:
627
+ self._to_sharded()
628
+
629
+ for module in modules_with_fsdp_params:
630
+ self._module_to_pre_save_state_dict_hook_handle[module] = (
631
+ module.register_state_dict_pre_hook(to_sharded_hook)
632
+ )
633
+ self._module_to_pre_load_state_dict_hook_handle[module] = (
634
+ module._register_load_state_dict_pre_hook(to_sharded_hook)
635
+ )
636
+
637
+ # Properties #
638
+ @property
639
+ def _reshard_after_forward(self) -> bool:
640
+ return self.post_forward_mesh_info is not None
641
+
642
+ @property
643
+ def _use_post_forward_mesh(self) -> bool:
644
+ return (
645
+ self._reshard_after_forward
646
+ and self.mesh_info != self.post_forward_mesh_info
647
+ )
648
+
649
+ @property
650
+ def _is_hsdp(self) -> bool:
651
+ return isinstance(self.mesh_info, HSDPMeshInfo)
652
+
653
+ @property
654
+ def _all_gather_process_group(self) -> dist.ProcessGroup:
655
+ mesh_info = (
656
+ cast(FSDPMeshInfo, self.post_forward_mesh_info)
657
+ if self.is_sharded_post_forward
658
+ else self.mesh_info
659
+ )
660
+ assert isinstance(mesh_info, FSDPMeshInfo)
661
+ return mesh_info.shard_process_group
662
+
663
+ @property
664
+ def _reduce_scatter_process_group(self) -> dist.ProcessGroup:
665
+ assert isinstance(self.mesh_info, FSDPMeshInfo)
666
+ return self.mesh_info.shard_process_group
667
+
668
+ @property
669
+ def _all_reduce_process_group(self) -> dist.ProcessGroup:
670
+ assert isinstance(self.mesh_info, HSDPMeshInfo)
671
+ return self.mesh_info.replicate_process_group
672
+
673
+ def _with_fqn(self, label: str) -> str:
674
+ if self._module_fqn:
675
+ return f"{label} ({self._module_fqn})"
676
+ return label
677
+
678
+ def __repr__(self):
679
+ return f"FSDPParamGroup(fqn={self._module_fqn})"
680
+
681
+ def _validate_no_meta_params(self):
682
+ param_names_on_meta = [
683
+ fsdp_param._param_fqn
684
+ for fsdp_param in self.fsdp_params
685
+ if fsdp_param.sharded_param.device.type == "meta"
686
+ ]
687
+ if param_names_on_meta:
688
+ raise RuntimeError(
689
+ "FSDP parameters should be materialized from meta device before training, "
690
+ f"but the following were still on meta device: {param_names_on_meta}\n"
691
+ "For example, call module.to_empty(device) to materialize to device and "
692
+ "call module.reset_parameters() on each module to initialize values."
693
+ )
694
+
695
+ def _validate_cpu_offload_params(self):
696
+ if not isinstance(self.offload_policy, CPUOffloadPolicy):
697
+ return
698
+ fsdp_params_not_on_cpu = [
699
+ fsdp_param
700
+ for fsdp_param in self.fsdp_params
701
+ if fsdp_param.sharded_param.device.type != "cpu"
702
+ ]
703
+ if fsdp_params_not_on_cpu:
704
+ raise RuntimeError(
705
+ "FSDP parameters should be materialized on CPU when enabling CPU offloading. "
706
+ 'For example, load a CPU state dict or call module.to_empty(device="cpu"). '
707
+ "Found following parameters on non-CPU device: "
708
+ f"{[(fsdp_param._param_fqn, fsdp_param.sharded_param.device) for fsdp_param in fsdp_params_not_on_cpu]}\n"
709
+ )
710
+
711
+
712
+ def _get_param_module_infos(
713
+ params: list[nn.Parameter], modules: tuple[nn.Module, ...]
714
+ ) -> list[ParamModuleInfo]:
715
+ """
716
+ Shared parameter: lin1.weight = lin2.weight
717
+ Shared module: mlp.lin1 = mlp.lin2
718
+ We do not remove duplicates when traversing both modules and parameters to
719
+ find shared modules' parameters and shared parameters within a module.
720
+ """
721
+ params_set = set(params)
722
+ param_to_module_info: dict[nn.Parameter, ParamModuleInfo] = {}
723
+ for module in modules:
724
+ for _, submodule in module.named_modules(remove_duplicate=False):
725
+ for param_name, param in _named_parameters_with_duplicates(
726
+ submodule, recurse=False
727
+ ):
728
+ if param in params_set:
729
+ if param not in param_to_module_info:
730
+ param_to_module_info[param] = ParamModuleInfo(
731
+ submodule, param_name
732
+ )
733
+ else:
734
+ param_to_module_info[param].shared_modules.append(submodule)
735
+ param_to_module_info[param].shared_param_names.append(
736
+ param_name
737
+ )
738
+ if len(param_to_module_info) != len(params):
739
+ raise AssertionError(f"Some parameters are not in the module tree of {module}")
740
+ return [param_to_module_info[param] for param in params]
741
+
742
+
743
+ class RegisterPostBackwardFunction(torch.autograd.Function):
744
+ @staticmethod
745
+ def _assert_not_tracing_fsdp():
746
+ if compiled_autograd_enabled():
747
+ # TODO: Find a way to print the offending FSDP2 module.
748
+ msg = """\
749
+ When Traceable FSDP2 is enabled, we should not be calling into `RegisterPostBackwardFunction`.
750
+ Instead, we rely on the param group's next `pre_backward` hook to trigger its previously unexecuted
751
+ `post_backward`, and we rely on FSDPState's `root_post_backward_callback` to trigger the resharding
752
+ of any leftover unsharded param groups.
753
+ If you are here, it means the forward part of this FSDP2 instance is not compiled, and you must also
754
+ compile the forward part if you want to use Traceable FSDP2."""
755
+ torch._dynamo.comptime.comptime.print(msg)
756
+ raise RuntimeError(msg)
757
+
758
+ @staticmethod
759
+ def forward(ctx, param_group: FSDPParamGroup, *inputs: torch.Tensor):
760
+ # All tensors in `inputs` should require gradient
761
+ RegisterPostBackwardFunction._assert_not_tracing_fsdp()
762
+ ctx.param_group = param_group
763
+ return inputs
764
+
765
+ @staticmethod
766
+ def backward(ctx, *grads: torch.Tensor):
767
+ RegisterPostBackwardFunction._assert_not_tracing_fsdp()
768
+ ctx.param_group.post_backward()
769
+ return (None,) + grads
_fsdp_state.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-decorators
2
+ # mypy: allow-untyped-defs
3
+ import functools
4
+ import logging
5
+ from collections.abc import Sequence
6
+ from typing import Any, Callable, Optional, TYPE_CHECKING
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch._logging import warning_once
11
+ from torch.autograd import Variable
12
+ from torch.autograd.graph import _MultiHandle
13
+ from torch.distributed._composable_state import (
14
+ _get_module_state,
15
+ _insert_module_state,
16
+ _State,
17
+ )
18
+ from torch.distributed.device_mesh import _get_device_handle
19
+ from torch.distributed.utils import _apply_to_tensors, _to_kwargs
20
+ from torch.utils._pytree import tree_flatten
21
+
22
+ from ._fsdp_api import MixedPrecisionPolicy
23
+ from ._fsdp_common import (
24
+ _cast_fp_tensor,
25
+ compiled_autograd_enabled,
26
+ detect_compiled_autograd,
27
+ TrainingState,
28
+ )
29
+ from ._fsdp_param_group import FSDPCommContext, FSDPParamGroup
30
+
31
+
32
+ if TYPE_CHECKING:
33
+ from ._fsdp_param import FSDPParam
34
+
35
+
36
+ logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
37
+
38
+
39
+ class FSDPStateContext:
40
+ """This has state shared across FSDP states."""
41
+
42
+ def __init__(self) -> None:
43
+ # All FSDP states in the root state's module tree
44
+ self.all_states: list[FSDPState] = []
45
+ # Iteration's forward root runs the once-per-forward logic; this root
46
+ # may not be the overall root set by lazy initialization in cases where
47
+ # only a submodule runs forward (e.g. encoder-only for eval)
48
+ self.iter_forward_root: Optional[FSDPState] = None
49
+ # Final callback should only be queued once per backward
50
+ self.post_backward_final_callback_queued: bool = False
51
+ # Whether to finalize backward in this backward's final callback
52
+ self.is_last_backward: bool = True
53
+ # Optional user-provided event recorded after optimizer for the
54
+ # all-gather streams to wait on in the root pre-forward
55
+ self.post_optim_event: Optional[torch.Event] = None
56
+
57
+
58
+ def disable_if_config_true(func):
59
+ @functools.wraps(func)
60
+ def fsdp_hook_wrapper(*args, **kwargs):
61
+ if torch._dynamo.config.skip_fsdp_hooks:
62
+ return torch._dynamo.disable(
63
+ func,
64
+ recursive=True,
65
+ reason="skipping FSDP hooks since torch._dynamo.config.skip_fsdp_hooks is set",
66
+ )(*args, **kwargs)
67
+ else:
68
+ return func(*args, **kwargs)
69
+
70
+ return fsdp_hook_wrapper
71
+
72
+
73
+ class FSDPState(_State):
74
+ def __init__(self) -> None:
75
+ super().__init__()
76
+ self._fsdp_param_group: Optional[FSDPParamGroup] = None
77
+ self._is_root: Optional[bool] = None # root set during lazy init
78
+ self._state_ctx = FSDPStateContext()
79
+ self._comm_ctx = FSDPCommContext()
80
+ self._training_state: TrainingState = TrainingState.IDLE
81
+ self._states_to_forward_prefetch: list[FSDPState] = []
82
+ self._states_to_backward_prefetch: list[FSDPState] = []
83
+ self._modules_to_run_forward: set[nn.Module] = set()
84
+ # ``False`` when user set reshard_after_forward
85
+ # through ``fully_shard`` or ``set_reshard_after_forward``
86
+ self._auto_reshard_after_forward: Optional[bool] = True
87
+
88
+ # Define a separate init since `__init__` is called in the contract
89
+ def init(
90
+ self,
91
+ modules: tuple[nn.Module, ...],
92
+ device: torch.device,
93
+ mp_policy: MixedPrecisionPolicy,
94
+ auto_reshard_after_forward: bool,
95
+ ) -> None:
96
+ for module in modules:
97
+ _insert_module_state(module, self)
98
+ self._modules = modules
99
+ self._device = device
100
+ self._device_handle = _get_device_handle(device.type)
101
+ self._mp_policy = mp_policy
102
+ self._auto_reshard_after_forward = auto_reshard_after_forward
103
+ if len(modules) == 1:
104
+ self._pre_forward_hook_handle = modules[0].register_forward_pre_hook(
105
+ self._pre_forward, prepend=True, with_kwargs=True
106
+ )
107
+ self._post_forward_hook_handle = modules[0].register_forward_hook(
108
+ self._post_forward, prepend=False
109
+ )
110
+ else:
111
+ hook_handle = _register_group_forward_hooks(
112
+ modules,
113
+ self._pre_forward,
114
+ self._post_forward,
115
+ self._modules_to_run_forward,
116
+ )
117
+ self._pre_forward_hook_handle = hook_handle
118
+ self._post_forward_hook_handle = hook_handle
119
+
120
+ def _root_pre_forward(
121
+ self, module: nn.Module, args: tuple[Any, ...], kwargs: dict[str, Any]
122
+ ) -> tuple[tuple[Any, ...], dict[str, Any]]:
123
+ self._lazy_init()
124
+ if self._state_ctx.iter_forward_root is not None:
125
+ return args, kwargs
126
+ if not compiled_autograd_enabled():
127
+ logger.debug("FSDP::root_pre_forward")
128
+ self._state_ctx.iter_forward_root = self
129
+ with torch.profiler.record_function("FSDP::root_pre_forward"):
130
+ # Wait for optimizer before implicitly prefetched all-gathers
131
+ if (event := self._state_ctx.post_optim_event) is not None:
132
+ self._comm_ctx.all_gather_copy_in_stream.wait_event(event)
133
+ self._comm_ctx.all_gather_stream.wait_event(event)
134
+ self._state_ctx.post_optim_event = None
135
+ else:
136
+ current_stream = self._device_handle.current_stream()
137
+ self._comm_ctx.all_gather_copy_in_stream.wait_stream(current_stream)
138
+ self._comm_ctx.all_gather_stream.wait_stream(current_stream)
139
+ if self._device.type in [
140
+ "cuda",
141
+ "hpu",
142
+ "xpu",
143
+ "mtia",
144
+ torch._C._get_privateuse1_backend_name(),
145
+ ]:
146
+ with torch.profiler.record_function("FSDP::inputs_to_device"):
147
+ args_tuple, kwargs_tuple = _to_kwargs(
148
+ args, kwargs, self._device, False
149
+ ) # same as DDP
150
+ args, kwargs = args_tuple[0], kwargs_tuple[0]
151
+ return args, kwargs
152
+
153
+ def _lazy_init(self) -> None:
154
+ """
155
+ Lazy initialization represents when all modules' parallelisms have
156
+ finalized (e.g. FSDP has been applied to all desired modules). This
157
+ means that we can determine which state is the root, and we do so by
158
+ the 1st state to run forward.
159
+ """
160
+ if self._is_root is not None:
161
+ return # no-op: already initialized
162
+ self._is_root = True
163
+ if len(self._modules) > 1:
164
+ raise RuntimeError(
165
+ f"FSDP requires a single root module but got {self._modules}"
166
+ )
167
+ detect_compiled_autograd()
168
+ root_module = self._modules[0]
169
+ visited_states: set[FSDPState] = set()
170
+ for module_name, module in root_module.named_modules():
171
+ if (state := _get_module_fsdp_state(module)) is None:
172
+ continue
173
+ if module is not root_module:
174
+ if state not in visited_states and state._is_root is not None:
175
+ raise RuntimeError(
176
+ "FSDP state has already been lazily initialized for "
177
+ f"{module_name}\nFSDP requires running forward through "
178
+ "the root module first"
179
+ )
180
+ state._is_root = False
181
+ self._state_ctx.all_states.append(state)
182
+ visited_states.add(state)
183
+ if self._fsdp_param_group and self._auto_reshard_after_forward:
184
+ # For the root, do not reshard after forward since for training,
185
+ # the parameters would be freed and all-gathered immediately
186
+ self._fsdp_param_group.post_forward_mesh_info = None
187
+ self._init_fqns()
188
+ self._init_shared_state()
189
+ # Run parameter group lazy inits after initializing FQNs for improved
190
+ # error messages
191
+ for state in self._state_ctx.all_states:
192
+ if state._fsdp_param_group:
193
+ state._fsdp_param_group.lazy_init()
194
+
195
+ def _init_shared_state(self) -> None:
196
+ self._comm_ctx.lazy_init(self._device)
197
+ for state in self._state_ctx.all_states:
198
+ state._state_ctx = self._state_ctx
199
+ state._comm_ctx = self._comm_ctx
200
+ if fsdp_param_group := state._fsdp_param_group:
201
+ fsdp_param_group.comm_ctx = self._comm_ctx
202
+
203
+ def _init_fqns(self) -> None:
204
+ """Sets module and parameter FQN attributes for debugging."""
205
+ assert self._is_root
206
+ root_module = self._modules[0]
207
+ param_to_fsdp_param: dict[nn.Parameter, FSDPParam] = {}
208
+ module_to_fsdp_param_group: dict[nn.Module, FSDPParamGroup] = {}
209
+ for state in self._state_ctx.all_states:
210
+ if fsdp_param_group := state._fsdp_param_group:
211
+ for fsdp_param in fsdp_param_group.fsdp_params:
212
+ param_to_fsdp_param[fsdp_param.sharded_param] = fsdp_param
213
+ for module in fsdp_param_group.modules:
214
+ module_to_fsdp_param_group[module] = fsdp_param_group
215
+ for param_name, param in root_module.named_parameters():
216
+ if param in param_to_fsdp_param:
217
+ param_to_fsdp_param[param]._param_fqn = param_name
218
+ for module_name, module in root_module.named_modules():
219
+ if module in module_to_fsdp_param_group:
220
+ module_fqn = module_to_fsdp_param_group[module]._module_fqn
221
+ if module_fqn is None:
222
+ module_to_fsdp_param_group[module]._module_fqn = module_name
223
+ else:
224
+ assert isinstance(module_fqn, str), f"{module_fqn}"
225
+ module_fqn += f", {module_name}"
226
+ module_to_fsdp_param_group[module]._module_fqn = module_fqn
227
+
228
+ @disable_if_config_true
229
+ def _pre_forward(
230
+ self, module: nn.Module, args: tuple[Any, ...], kwargs: dict[str, Any]
231
+ ) -> tuple[tuple[Any, ...], dict[str, Any]]:
232
+ # When composing with module-hook-based activation checkpointing, the
233
+ # the pre-backward hook is responsible for the unshard
234
+ if self._training_state == TrainingState.PRE_BACKWARD:
235
+ return args, kwargs
236
+ self._training_state = TrainingState.FORWARD
237
+ args, kwargs = self._root_pre_forward(module, args, kwargs)
238
+ if self._mp_policy.cast_forward_inputs and self._mp_policy.param_dtype:
239
+ with torch.profiler.record_function("FSDP::cast_forward_inputs"):
240
+ cast_fn = functools.partial(
241
+ _cast_fp_tensor, self._mp_policy.param_dtype
242
+ )
243
+ args, kwargs = (
244
+ _apply_to_tensors(cast_fn, args),
245
+ _apply_to_tensors(cast_fn, kwargs),
246
+ )
247
+ if self._fsdp_param_group:
248
+ args, kwargs = self._fsdp_param_group.pre_forward(module, args, kwargs)
249
+ for fsdp_state in self._states_to_forward_prefetch:
250
+ if (target_param_group := fsdp_state._fsdp_param_group) is not None:
251
+ FSDPParamGroup._prefetch_unshard(target_param_group, "forward")
252
+ return args, kwargs
253
+
254
+ @disable_if_config_true
255
+ def _post_forward(self, module: nn.Module, input: Any, output: Any) -> Any:
256
+ # When composing with module-hook-based activation checkpointing, the
257
+ # post-backward hook is responsible for the reshard
258
+ if self._training_state == TrainingState.PRE_BACKWARD:
259
+ return output
260
+ if self._fsdp_param_group:
261
+ output = self._fsdp_param_group.post_forward(module, input, output)
262
+ output = self._register_pre_backward_hook(output)
263
+ self._training_state = TrainingState.IDLE
264
+ if self._state_ctx.iter_forward_root is self:
265
+ if all_gather_state := self._comm_ctx.all_gather_state:
266
+ # Free the last all-gather result if needed; refer to
267
+ # [Note: Overlapping all-gather copy-in and all-gather]
268
+ self._comm_ctx.all_gather_copy_in_stream.wait_event(
269
+ all_gather_state.event
270
+ )
271
+ self._comm_ctx.all_gather_stream.wait_event(all_gather_state.event)
272
+ self._comm_ctx.all_gather_state = None # free the all-gather result
273
+ self._state_ctx.iter_forward_root = None
274
+ if self._mp_policy.output_dtype is not None:
275
+ with torch.profiler.record_function("FSDP::cast_forward_outputs"):
276
+ output = _apply_to_tensors(
277
+ functools.partial(_cast_fp_tensor, self._mp_policy.output_dtype),
278
+ output,
279
+ )
280
+ return output
281
+
282
+ def _pre_backward(self, grad: torch.Tensor) -> torch.Tensor:
283
+ self._training_state = TrainingState.PRE_BACKWARD
284
+ self._register_root_post_backward_final_callback()
285
+ if self._fsdp_param_group:
286
+ default_prefetch = len(self._states_to_backward_prefetch) == 0
287
+ self._fsdp_param_group.pre_backward(default_prefetch)
288
+ for fsdp_state in self._states_to_backward_prefetch:
289
+ if (target_param_group := fsdp_state._fsdp_param_group) is not None:
290
+ FSDPParamGroup._prefetch_unshard(target_param_group, "backward")
291
+ return grad
292
+
293
+ def _root_post_backward_final_callback(self) -> None:
294
+ if not compiled_autograd_enabled():
295
+ logger.debug("FSDP::root_post_backward")
296
+ with torch.profiler.record_function("FSDP::root_post_backward_callback"):
297
+ for state in self._state_ctx.all_states:
298
+ fsdp_param_group = state._fsdp_param_group
299
+ if (
300
+ fsdp_param_group
301
+ and fsdp_param_group._training_state != TrainingState.POST_BACKWARD
302
+ ):
303
+ # Run post-backward in case forward inputs did not require
304
+ # gradient so the autograd backward did not run
305
+ fsdp_param_group.post_backward()
306
+ state._training_state = TrainingState.IDLE
307
+ if fsdp_param_group:
308
+ fsdp_param_group._training_state = TrainingState.IDLE
309
+ if self._state_ctx.is_last_backward:
310
+ state._finalize_backward()
311
+ if self._state_ctx.is_last_backward:
312
+ self._comm_ctx.post_forward_order.clear()
313
+ if self._comm_ctx.reduce_scatter_state is not None:
314
+ self._device_handle.current_stream().wait_event(
315
+ self._comm_ctx.reduce_scatter_state.event
316
+ )
317
+ self._comm_ctx.reduce_scatter_state = None
318
+ self._state_ctx.post_backward_final_callback_queued = False
319
+
320
+ def _finalize_backward(self) -> None:
321
+ if self._modules_to_run_forward:
322
+ msg = (
323
+ f"{len(self._modules_to_run_forward)} of the {len(self._modules)} "
324
+ f"modules passed to fully_shard did not run forward before backward, "
325
+ "which is error-prone since FSDP post-forward/pre-backward logic "
326
+ "will not run for these modules. We recommend passing only modules "
327
+ "that run forward together. Modules that did not run forward: "
328
+ f"{list(self._modules_to_run_forward)}"
329
+ )
330
+ warning_once(logger, msg, stacklevel=2)
331
+ # Clear since we want the next forward to run
332
+ self._modules_to_run_forward.clear()
333
+ if self._fsdp_param_group:
334
+ self._fsdp_param_group.finalize_backward()
335
+
336
+ def _register_pre_backward_hook(self, output: Any) -> Any:
337
+ if not torch.is_grad_enabled():
338
+ return output
339
+ flat_outputs, _ = tree_flatten(output)
340
+ for t in flat_outputs:
341
+ if torch.is_tensor(t) and t.requires_grad:
342
+ t.register_hook(self._pre_backward)
343
+ return output
344
+
345
+ def _register_root_post_backward_final_callback(self):
346
+ if self._state_ctx.post_backward_final_callback_queued:
347
+ return
348
+ self._state_ctx.post_backward_final_callback_queued = True
349
+ Variable._execution_engine.queue_callback(
350
+ self._root_post_backward_final_callback
351
+ )
352
+
353
+
354
+ def _get_module_fsdp_state(module: nn.Module) -> Optional[FSDPState]:
355
+ state = _get_module_state(module)
356
+ if isinstance(state, FSDPState):
357
+ return state
358
+ return None
359
+
360
+
361
+ def _register_group_forward_hooks(
362
+ modules: Sequence[nn.Module],
363
+ pre_hook: Callable,
364
+ post_hook: Callable,
365
+ modules_to_run: set[nn.Module],
366
+ ):
367
+ """
368
+ Registers group forward pre and post-hooks. The pre-hook runs upon the
369
+ first module pre-forward, and the post-hook runs upon the last. If at least
370
+ one module does not run forward, then the post-hook does not run.
371
+ """
372
+ modules_set = set(modules)
373
+
374
+ @disable_if_config_true
375
+ @functools.wraps(pre_hook)
376
+ def wrapped_pre_hook(*args: Any, **kwargs: Any):
377
+ if len(modules_to_run) == 0: # first to run
378
+ modules_to_run.update(modules_set)
379
+ return pre_hook(*args, **kwargs)
380
+
381
+ @disable_if_config_true
382
+ def get_wrapped_post_hook(module: nn.Module):
383
+ @functools.wraps(post_hook)
384
+ def wrapped_post_hook(*args: Any, **kwargs: Any):
385
+ modules_to_run.discard(module)
386
+ if len(modules_to_run) == 0:
387
+ return post_hook(*args, **kwargs)
388
+
389
+ return wrapped_post_hook
390
+
391
+ pre_handles = [
392
+ module.register_forward_pre_hook(
393
+ wrapped_pre_hook, prepend=True, with_kwargs=True
394
+ )
395
+ for module in modules
396
+ ]
397
+ post_handles = [
398
+ module.register_forward_hook(
399
+ get_wrapped_post_hook(module), prepend=False, always_call=True
400
+ )
401
+ for module in modules
402
+ ]
403
+ return _MultiHandle(tuple(pre_handles + post_handles))
_fully_shard.py ADDED
@@ -0,0 +1,672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-decorators
2
+ # mypy: allow-untyped-defs
3
+
4
+ from __future__ import annotations
5
+
6
+ import functools
7
+ from typing import (
8
+ Any,
9
+ Callable,
10
+ cast,
11
+ NoReturn,
12
+ Optional,
13
+ overload,
14
+ TYPE_CHECKING,
15
+ Union,
16
+ )
17
+ from typing_extensions import deprecated
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from torch.distributed._composable import contract
22
+ from torch.distributed.utils import _get_root_modules
23
+
24
+ from ._fsdp_api import MixedPrecisionPolicy, OffloadPolicy
25
+ from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo
26
+ from ._fsdp_init import (
27
+ _get_device_from_mesh,
28
+ _get_managed_modules,
29
+ _get_managed_states,
30
+ _get_post_forward_mesh_info,
31
+ _init_default_fully_shard_mesh,
32
+ _move_states_to_device,
33
+ )
34
+ from ._fsdp_param_group import FSDPParamGroup
35
+ from ._fsdp_state import _get_module_fsdp_state, FSDPState
36
+
37
+
38
+ if TYPE_CHECKING:
39
+ from collections.abc import Iterable
40
+
41
+ from torch.distributed.tensor import DeviceMesh, Shard
42
+
43
+ __all__ = [
44
+ "fully_shard",
45
+ "FSDPModule",
46
+ "UnshardHandle",
47
+ "register_fsdp_forward_method",
48
+ ]
49
+
50
+
51
+ cls_to_fsdp_cls: dict[type, type] = {}
52
+
53
+
54
+ @overload
55
+ def fully_shard(
56
+ module: nn.Module,
57
+ *,
58
+ mesh: Optional[DeviceMesh] = ...,
59
+ reshard_after_forward: Union[bool, int] = ...,
60
+ shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = ...,
61
+ mp_policy: MixedPrecisionPolicy = ...,
62
+ offload_policy: OffloadPolicy = ...,
63
+ ignored_params: Optional[set[nn.Parameter]] = ...,
64
+ ) -> FSDPModule: ...
65
+
66
+
67
+ @overload
68
+ def fully_shard(
69
+ module: list[nn.Module],
70
+ *,
71
+ mesh: Optional[DeviceMesh] = ...,
72
+ reshard_after_forward: Union[bool, int] = ...,
73
+ shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = ...,
74
+ mp_policy: MixedPrecisionPolicy = ...,
75
+ offload_policy: OffloadPolicy = ...,
76
+ ignored_params: Optional[set[nn.Parameter]] = ...,
77
+ ) -> list[FSDPModule]: ...
78
+
79
+
80
+ # The decorator adds a state object to `module` that can be accessed via
81
+ # `fully_shard.state(module)`. The state object and module are 1:1.
82
+ # [1] Python runtime decorator does not play well with static type checking
83
+ # so suppressing some type checks to support type overloads
84
+ # such that caller can still get correct return types based on input type
85
+ @contract(state_cls=FSDPState) # type: ignore[misc] # see [1]
86
+ def fully_shard(
87
+ module,
88
+ *,
89
+ mesh: Optional[DeviceMesh] = None,
90
+ reshard_after_forward: Optional[Union[bool, int]] = None,
91
+ shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = None,
92
+ mp_policy: MixedPrecisionPolicy = MixedPrecisionPolicy(),
93
+ offload_policy: OffloadPolicy = OffloadPolicy(),
94
+ ignored_params: Optional[set[nn.Parameter]] = None,
95
+ ):
96
+ """
97
+ Apply fully sharded data parallelism (FSDP) to ``module``, where FSDP
98
+ shards module parameters, gradients, and optimizer states across data
99
+ parallel workers to save memory at the cost of communication.
100
+
101
+ At initialization, FSDP shards the module's parameters across the data
102
+ parallel workers given by ``mesh``. Before forward, FSDP all-gathers the
103
+ sharded parameters across the data-parallel workers to get the unsharded
104
+ parameters for forward computation. If ``reshard_after_forward`` is
105
+ ``True``, then FSDP frees the unsharded parameters after forward and
106
+ re-all-gathers them in backward before gradient computation. After gradient
107
+ computation, FSDP frees the unsharded parameters and reduce-scatters the
108
+ unsharded gradients across data-parallel workers.
109
+
110
+ This implementation represents the sharded parameters as :class:`DTensor` s
111
+ sharded on dim-0, while the unsharded parameters will be like the original
112
+ parameters on ``module`` (e.g. :class:`torch.Tensor` if originally
113
+ :class:`torch.Tensor`). A module
114
+ `forward pre-hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_pre_hook>`_
115
+ on ``module`` all-gathers the parameters, and a module
116
+ `forward hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook>`_
117
+ on ``module`` frees them (if needed). Similar backward hooks all-gather
118
+ parameters and later free parameters and reduce-scatter gradients.
119
+
120
+ Since grouping multiple tensors together for one collective is critical for
121
+ communication efficiency, this implementation makes this grouping first
122
+ class. Calling :meth:`fully_shard` on ``module`` constructs one group that
123
+ includes the parameters in ``module.parameters()`` except those already
124
+ assigned to a group from an earlier call on a submodule. This means that
125
+ :meth:`fully_shard` should be called bottom-up on your model. Each group's
126
+ parameters are all-gathered in one collective, and its gradients are
127
+ reduce-scattered in one collective. Partitioning the model into multiple
128
+ groups ("layer by layer") allows for peak memory savings and communication/computation
129
+ overlap. Users generally should *not* call :meth:`fully_shard` only on the
130
+ topmost root module.
131
+
132
+ Args:
133
+ module (Union[nn.Module, List[nn.Module]): The module or modules to
134
+ shard with FSDP and group together for communication.
135
+ mesh (Optional[DeviceMesh]): This data parallel mesh defines the
136
+ sharding and device. If 1D, then parameters are fully sharded
137
+ across the 1D mesh (FSDP) with ``(Shard(0),)`` placement. If 2D,
138
+ then parameters are sharded across the 1st dim and replicated
139
+ across the 0th dim (HSDP) with ``(Replicate(), Shard(0))``
140
+ placement. The mesh's device type gives the device type used for
141
+ communication; if a CUDA or CUDA-like device type, then we use the
142
+ current device.
143
+ reshard_after_forward (Optional[Union[bool, int]]): This controls the parameter
144
+ behavior after forward and can trade off memory and communication:
145
+
146
+ - If ``True``, then this reshards parameters after forward and
147
+ re-all-gathers in backward.
148
+ - If ``False``, then this keeps the unsharded parameters in memory
149
+ after forward and avoids the all-gather in backward. For best performance,
150
+ we usually set ``False`` for the root module, because the root module
151
+ is typically required immediately when the backward pass begins.
152
+ - If ``None``, it is set to ``True`` for non-root modules and ``False``
153
+ for root modules.
154
+ - If an ``int``, then this represents the world size to reshard to
155
+ after forward. It should be a non-trivial divisor of the ``mesh``
156
+ shard dim size (i.e. excluding 1 and the dim size itself). A
157
+ choice may be the intra-node size (e.g. ``torch.cuda.device_count()``).
158
+ This allows the all-gather in backward to be over a smaller world
159
+ size at the cost of higher memory usage than setting to ``True``.
160
+ - After forward, the parameters registered to the module depend on
161
+ to this: The registered parameters are the sharded parameters if
162
+ ``True``; unsharded parameters if ``False``; and the parameters
163
+ resharded to the smaller mesh otherwise. To modify the parameters
164
+ between forward and backward, the registered parameters must be
165
+ the sharded parameters. For ``False`` or an ``int``, this can be
166
+ done by manually resharding via :meth:`reshard`.
167
+ shard_placement_fn (Optional[Callable[[nn.Parameter], Optional[Shard]]]):
168
+ This callable can be used to override the sharding placement for a
169
+ parameter to shard a parameter on a dimension other than dim-0. If
170
+ this callable returns a :class:`Shard` placement (not ``None``),
171
+ then FSDP will shard according to that placement (e.g. ``Shard(1)``).
172
+ If sharding on a nonzero dim, we currently require even sharding,
173
+ i.e. the tensor dim size on that dim must be divisible by the FSDP
174
+ shard mesh size.
175
+ mp_policy (MixedPrecisionPolicy): This controls the mixed precision
176
+ policy, which offers parameter/reduction mixed precision for this
177
+ module. See :class:`MixedPrecisionPolicy` for details.
178
+ offload_policy (OffloadPolicy): This controls the offloading policy,
179
+ which offers parameter/gradient/optimizer state offloading. See
180
+ :class:`OffloadPolicy` and its subclasses for details.
181
+ ignored_params: Optional(Set[nn.Parameter]): The set of parameters to be
182
+ ignored by FSDP. They will not be sharded, nor moved to the device
183
+ during init, nor have their gradients reduced in backward.
184
+
185
+ Returns:
186
+ FSDPModule: The module with FSDP applied (in-place).
187
+ """
188
+ torch._C._log_api_usage_once("torch.distributed.fsdp.fully_shard")
189
+ if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
190
+ raise ValueError(
191
+ f"fully_shard does not support containers that do not implement forward: {module}"
192
+ )
193
+ mesh = mesh or _init_default_fully_shard_mesh()
194
+ if mesh.ndim not in (1, 2):
195
+ raise ValueError(f"fully_shard expects a 1D or 2D DeviceMesh but got {mesh}")
196
+ elif mesh.ndim == 1:
197
+ mesh_info = FSDPMeshInfo(mesh, shard_mesh_dim=0)
198
+ else:
199
+ if mesh.mesh_dim_names is None:
200
+ raise AssertionError(
201
+ "Please init the 2D mesh for HSDP with mesh_dim_names specified"
202
+ )
203
+ mesh_info = HSDPMeshInfo(mesh, shard_mesh_dim=1, replicate_mesh_dim=0)
204
+ device = _get_device_from_mesh(mesh)
205
+ auto_reshard_after_forward = reshard_after_forward is None
206
+ # If the user does not provide ``reshard_after_forward``, we set it to True.
207
+ # During lazy_init, we identify which module is the root and override its value to False
208
+ post_forward_mesh_info = _get_post_forward_mesh_info(
209
+ reshard_after_forward if not auto_reshard_after_forward else True, # type: ignore[arg-type]
210
+ mesh_info,
211
+ )
212
+
213
+ arg_module = module
214
+ modules = (
215
+ (module,) if isinstance(module, nn.Module) else tuple(_get_root_modules(module))
216
+ )
217
+ state = fully_shard.state(modules[0]) # type: ignore[attr-defined] # see [1]
218
+ state.init(modules, device, mp_policy, auto_reshard_after_forward)
219
+
220
+ managed_modules = _get_managed_modules(modules, ignored_params)
221
+ params, buffers = _get_managed_states(managed_modules, ignored_params)
222
+
223
+ _move_states_to_device(params, buffers, device)
224
+ if params:
225
+ state._fsdp_param_group = FSDPParamGroup(
226
+ params,
227
+ modules,
228
+ mesh_info,
229
+ post_forward_mesh_info,
230
+ device,
231
+ shard_placement_fn,
232
+ mp_policy,
233
+ offload_policy,
234
+ )
235
+
236
+ # For Dynamo
237
+ for managed_module in managed_modules:
238
+ managed_module._is_fsdp_managed_module = True # type: ignore[assignment]
239
+ managed_module._fsdp_use_orig_params = True # type: ignore[assignment]
240
+
241
+ # Place FSDP leftmost for highest priority in the method resolution order
242
+ for module in modules:
243
+ cls = module.__class__
244
+ new_cls = cls_to_fsdp_cls.get(cls, None)
245
+ if not new_cls:
246
+ dct = {"__deepcopy__": _unimplemented_deepcopy}
247
+ new_cls = type(f"FSDP{cls.__name__}", (FSDPModule, cls), dct)
248
+ cls_to_fsdp_cls[cls] = new_cls
249
+ module.__class__ = new_cls
250
+ return arg_module
251
+
252
+
253
+ def _unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
254
+ raise AssertionError(
255
+ "FSDP does not support deepcopy. Please use state dict for serialization."
256
+ )
257
+
258
+
259
+ class FSDPModule:
260
+ def __new__(cls, *args, **kwargs):
261
+ """
262
+ Override ``__new__`` to remove the FSDP class and directly construct
263
+ the original class for cases like indexing into a container module.
264
+ """
265
+ # Use index 2 since 0 is the dynamically constructed `FSDP<...>` class
266
+ # and index 1 is the `FSDPModule` class itself
267
+ orig_cls = cls.__mro__[2]
268
+ self = orig_cls.__new__(orig_cls, *args, **kwargs)
269
+ self.__init__(*args, **kwargs)
270
+ return self
271
+
272
+ def reshard(self) -> None:
273
+ """
274
+ Reshards the module's parameters, freeing the unsharded parameters if
275
+ they are allocated and registering the sharded parameters to the
276
+ module. This method is *not* recursive.
277
+ """
278
+ state = self._get_fsdp_state()
279
+ if fsdp_param_group := state._fsdp_param_group:
280
+ fsdp_param_group.reshard()
281
+
282
+ def unshard(self, async_op: bool = False) -> Optional[UnshardHandle]:
283
+ """
284
+ Unshards the module's parameters by allocating memory and all-gathering
285
+ the parameters. This method is *not* recursive. The unshard follows the
286
+ :class:`MixedPrecisionPolicy`, so it will all-gather following
287
+ ``param_dtype`` if set.
288
+
289
+ Args:
290
+ async_op (bool): If ``True``, then returns a :class:`UnshardHandle`
291
+ that has a :meth:`wait` method to wait on the unshard op. If
292
+ ``False``, then returns ``None`` and waits on the handle inside
293
+ this function.
294
+
295
+ .. note:: If ``async_op=True``, then FSDP will wait on the pending
296
+ unshard in the module's pre-forward for the user. The user only
297
+ needs to call :meth:`wait` explicitly if the wait should happen
298
+ before pre-forward.
299
+ """
300
+ state = self._get_fsdp_state()
301
+ fsdp_param_group = state._fsdp_param_group
302
+ if fsdp_param_group is not None:
303
+ fsdp_param_group.lazy_init()
304
+ fsdp_param_group.unshard(async_op=async_op)
305
+ handle = _UnshardHandleImpl(fsdp_param_group)
306
+ if async_op:
307
+ return handle
308
+ handle.wait()
309
+ return None
310
+
311
+ def set_is_last_backward(self, is_last_backward: bool) -> None:
312
+ """
313
+ Sets whether the next backward is the last one. On the last backward,
314
+ FSDP waits on pending gradient reduction and clears internal data
315
+ data structures for backward prefetching. This can be useful for
316
+ microbatching.
317
+ """
318
+ state = self._get_fsdp_state()
319
+ state._state_ctx.is_last_backward = is_last_backward
320
+
321
+ def set_requires_gradient_sync(
322
+ self, requires_gradient_sync: bool, *, recurse: bool = True
323
+ ) -> None:
324
+ """
325
+ Sets if the module should sync gradients. This can be used to implement
326
+ gradient accumulation *without communication*. For HSDP, this controls
327
+ both reduce-scatter and all-reduce together. This is the equivalence of
328
+ `no_sync` in FSDP1.
329
+
330
+ Args:
331
+ requires_gradient_sync (bool): Whether to reduce gradients for the
332
+ module's parameters.
333
+ recurse (bool): Whether to set for all FSDP submodules or just the
334
+ passed-in module.
335
+ """
336
+ self_module = cast(nn.Module, self)
337
+ modules = list(self_module.modules()) if recurse else [self_module]
338
+ for module in modules:
339
+ if isinstance(module, FSDPModule):
340
+ state = module._get_fsdp_state()
341
+ if fsdp_param_group := state._fsdp_param_group:
342
+ fsdp_param_group.reduce_grads = requires_gradient_sync
343
+ fsdp_param_group.all_reduce_grads = requires_gradient_sync
344
+
345
+ def set_requires_all_reduce(
346
+ self, requires_all_reduce: bool, *, recurse: bool = True
347
+ ) -> None:
348
+ """
349
+ Sets if the module should all-reduce gradients. This can be used to
350
+ implement gradient accumulation with only reduce-scatter but not
351
+ all-reduce for HSDP.
352
+ """
353
+ self_module = cast(nn.Module, self)
354
+ modules = list(self_module.modules()) if recurse else [self_module]
355
+ for module in modules:
356
+ if isinstance(module, FSDPModule):
357
+ state = module._get_fsdp_state()
358
+ if fsdp_param_group := state._fsdp_param_group:
359
+ fsdp_param_group.all_reduce_grads = requires_all_reduce
360
+
361
+ def set_reshard_after_forward(
362
+ self, reshard_after_forward: bool, recurse: bool = True
363
+ ) -> None:
364
+ """
365
+ Sets if the module should reshard parameters after forward. This can be
366
+ used to change the ``reshard_after_forward`` FSDP arg at runtime. For
367
+ example, this can be used to set the FSDP root module's value to
368
+ ``True`` (since it is otherwise specially set to ``False``), or it can
369
+ set an FSDP module's value to ``False`` for running evals and set back
370
+ to ``True`` for training.
371
+
372
+ Args:
373
+ reshard_after_forward (bool): Whether to reshard parameters after
374
+ forward.
375
+ recurse (bool): Whether to set for all FSDP submodules or just the
376
+ passed-in module.
377
+ """
378
+ if not isinstance(reshard_after_forward, bool):
379
+ raise ValueError(
380
+ f"reshard_after_forward should be a bool, got {type(reshard_after_forward)}"
381
+ )
382
+ self_module = cast(nn.Module, self)
383
+ modules = list(self_module.modules()) if recurse else [self_module]
384
+ for module in modules:
385
+ if isinstance(module, FSDPModule):
386
+ state = module._get_fsdp_state()
387
+ state._auto_reshard_after_forward = False
388
+ if fsdp_param_group := state._fsdp_param_group:
389
+ fsdp_param_group.post_forward_mesh_info = (
390
+ _get_post_forward_mesh_info(
391
+ reshard_after_forward, fsdp_param_group.mesh_info
392
+ )
393
+ )
394
+
395
+ def set_reshard_after_backward(
396
+ self, reshard_after_backward: bool, *, recurse: bool = True
397
+ ) -> None:
398
+ """
399
+ Sets if the module should reshard parameters after backward. This can
400
+ be used during gradient accumulation to trade off higher memory for
401
+ reduced communication since the unsharded parameters do not need to be
402
+ re-all-gathered before the next forward.
403
+
404
+ Args:
405
+ reshard_after_backward (bool): Whether to reshard parameters after
406
+ backward.
407
+ recurse (bool): Whether to set for all FSDP submodules or just the
408
+ passed-in module.
409
+ """
410
+ self_module = cast(nn.Module, self)
411
+ modules = list(self_module.modules()) if recurse else [self_module]
412
+ for module in modules:
413
+ if isinstance(module, FSDPModule):
414
+ state = module._get_fsdp_state()
415
+ if fsdp_param_group := state._fsdp_param_group:
416
+ fsdp_param_group.reshard_after_backward = reshard_after_backward
417
+
418
+ def set_modules_to_forward_prefetch(self, modules: list[FSDPModule]) -> None:
419
+ """
420
+ Sets the FSDP modules for which this FSDP module should explicitly
421
+ prefetch all-gathers in forward. The prefetching runs after this
422
+ module's all-gather copy-out.
423
+
424
+ Passing a singleton list containing the next FSDP module gives the same
425
+ all-gather overlap behavior as the default overlap behavior, except the
426
+ prefetched all-gather is issued earlier from the CPU. Passing a list
427
+ with at least length two is required for more aggressive overlap and
428
+ will use more reserved memory.
429
+
430
+ Args:
431
+ modules (List[FSDPModule]): FSDP modules to prefetch.
432
+ """
433
+ _assert_all_fsdp_modules(modules)
434
+ self._get_fsdp_state()._states_to_forward_prefetch = [
435
+ module._get_fsdp_state() for module in modules
436
+ ]
437
+
438
+ def set_modules_to_backward_prefetch(self, modules: list[FSDPModule]) -> None:
439
+ """
440
+ Sets the FSDP modules for which this FSDP module should explicitly
441
+ prefetch all-gathers in backward. This overrides the default backward
442
+ pretching implementation that prefetches the next FSDP module based on
443
+ the reverse post-forward order.
444
+
445
+ Passing a singleton list containing the previous FSDP module gives the
446
+ same all-gather overlap behavior as the default overlap behavior.
447
+ Passing a list with at least length two is required for more aggressive
448
+ overlap and will use more reserved memory.
449
+
450
+ Args:
451
+ modules (List[FSDPModule]): FSDP modules to prefetch.
452
+ """
453
+ _assert_all_fsdp_modules(modules)
454
+ self._get_fsdp_state()._states_to_backward_prefetch = [
455
+ module._get_fsdp_state() for module in modules
456
+ ]
457
+
458
+ def set_all_reduce_hook(
459
+ self,
460
+ hook: Callable[[torch.Tensor], None],
461
+ *,
462
+ stream: Optional[torch.cuda.Stream] = None,
463
+ ):
464
+ """
465
+ Args:
466
+ hook (Callable[[torch.Tensor], None]): User-defined all-reduce hook
467
+ with expected signature ``hook(reduce_output: torch.Tensor) -> None``
468
+ where ``reduce_output`` is the reduce-scatter output if only
469
+ using FSDP or the all-reduce output if using native HSDP.
470
+ stream (Optional[torch.cuda.Stream]): Stream to run the all-reduce
471
+ hook in. This should only be set if not using native HSDP. If
472
+ using native HSDP, the hook will run in the internally defined
473
+ all-reduce stream used by the native HSDP all-reduce.
474
+ """
475
+ state = self._get_fsdp_state()
476
+ if (fsdp_param_group := state._fsdp_param_group) is not None:
477
+ fsdp_param_group._all_reduce_hook = hook
478
+ if stream is not None:
479
+ if fsdp_param_group._is_hsdp:
480
+ raise ValueError("stream cannot be set when using native HSDP")
481
+ fsdp_param_group._all_reduce_hook_stream = stream
482
+
483
+ def set_post_optim_event(self, event: torch.Event) -> None:
484
+ """
485
+ Sets a post-optimizer-step event for the root FSDP module to wait the
486
+ all-gather streams on.
487
+
488
+ By default, the root FSDP module waits the all-gather streams on the
489
+ current stream to ensure that the optimizer step has finished before
490
+ all-gathering. However, this may introduce false dependencies if
491
+ there is unrelated computation after the optimizer step. This API
492
+ allows the user to provide their own event to wait on. After the root
493
+ waits on the event, the event is discarded, so this API should be
494
+ called with a new event each iteration.
495
+
496
+ Args:
497
+ event (torch.Event): Event recorded after the optimizer step
498
+ to wait all-gather streams on.
499
+ """
500
+ self._get_fsdp_state()._state_ctx.post_optim_event = event
501
+
502
+ @deprecated("Use `set_gradient_divide_factor` instead")
503
+ def set_reduce_scatter_divide_factor(self, factor: float) -> None:
504
+ """Use :py:meth:`set_gradient_divide_factor` instead"""
505
+ self.set_gradient_divide_factor(factor)
506
+
507
+ def set_gradient_divide_factor(self, factor: float) -> None:
508
+ """
509
+ Sets a custom divide factor for the gradient reduction. This might use
510
+ a custom reduce op using NCCL's PreMulSum, which allows multiplying by
511
+ the factor before reduction.
512
+
513
+ Args:
514
+ factor (float): Custom divide factor.
515
+ """
516
+ state = self._get_fsdp_state()
517
+ if (fsdp_param_group := state._fsdp_param_group) is not None:
518
+ fsdp_param_group.gradient_divide_factor = factor
519
+
520
+ def set_force_sum_reduction_for_comms(self, enable: bool) -> None:
521
+ """
522
+ Sets whether to require the low-level collective communication
523
+ primitives to exclusively use "sum"-type reductions, even if it comes
524
+ at the cost of separate additional pre- or post-scaling operations.
525
+ This is needed for example because NCCL currently supports zero-copy
526
+ transfers only for this kind of collectives.
527
+
528
+ NB: for MTIA devices, this is always implicitly enabled.
529
+
530
+ NB: if `set_all_reduce_hook` is used under FSDP setup, the caller needs
531
+ to ensure the custom all-reduce across FSDP units follow this strategy
532
+ as well, as FSDP can no longer automatically handle that.
533
+
534
+ Args:
535
+ enable (bool): Whether to only ever use ReduceOp.SUM for comms.
536
+ """
537
+ state = self._get_fsdp_state()
538
+ if (fsdp_param_group := state._fsdp_param_group) is not None:
539
+ fsdp_param_group.force_sum_reduction_for_comms = enable
540
+
541
+ def set_unshard_in_backward(self, unshard_in_backward: bool) -> None:
542
+ """
543
+ Sets whether the FSDP module's parameters need to be unsharded in
544
+ backward. This can be used in expert cases when the user knows that all
545
+ parameters in this FSDP module's parameter group are not needed for
546
+ backward computation (e.g. embedding).
547
+ """
548
+ state = self._get_fsdp_state()
549
+ if (fsdp_param_group := state._fsdp_param_group) is not None:
550
+ fsdp_param_group.unshard_in_backward = unshard_in_backward
551
+
552
+ def set_allocate_memory_from_process_group_for_comm(self, enable: bool) -> None:
553
+ """
554
+ Sets whether the temporary staging buffers used to send and receive data
555
+ over collective communications should be allocated using the custom
556
+ optimized allocator provided by the ProcessGroup itself (if any). This
557
+ might allow the ProcessGroup to be more efficient. For example, when
558
+ using NCCL, this enables it to leverage zero-copy transfers over SHARP
559
+ (for NVLink and/or InfiniBand).
560
+
561
+ Args:
562
+ enable (bool): Whether to turn on ProcessGroup allocation.
563
+ """
564
+ state = self._get_fsdp_state()
565
+ if (fsdp_param_group := state._fsdp_param_group) is not None:
566
+ fsdp_param_group.allocate_memory_from_process_group = enable
567
+
568
+ def _set_unshard_async_op(self, async_op: bool):
569
+ """
570
+ Sets whether to use ``async_op=True`` or ``False`` for the pre-forward
571
+ and pre-backward unshard op. This defaults to ``False`` but can be set
572
+ to ``True`` with this method.
573
+
574
+ Setting this to ``True`` allows the all-gather allocations to happen in
575
+ the default stream, avoiding inter-stream memory fragmentation.
576
+ However, you must use explicit prefetching (e.g. via :meth:`unshard`)
577
+ in forward to still get overlap, and the pre-all-gather ops like dtype
578
+ casting and copy-in will not overlap with compute.
579
+ """
580
+ self_module = cast(nn.Module, self)
581
+ for module in self_module.modules():
582
+ if isinstance(module, FSDPModule):
583
+ state = module._get_fsdp_state()
584
+ if fsdp_param_group := state._fsdp_param_group:
585
+ fsdp_param_group.unshard_async_op = async_op
586
+
587
+ def _get_fsdp_state(self) -> FSDPState:
588
+ if (state := _get_module_fsdp_state(cast(nn.Module, self))) is None:
589
+ raise AssertionError(f"No FSDP state found on {self}")
590
+ return state
591
+
592
+ def _apply(self, *args: Any, **kwargs: Any) -> Any:
593
+ # Reshard to ensure that sharded parameters are registered
594
+ self.reshard()
595
+ ret = super()._apply(*args, **kwargs) # type: ignore[misc]
596
+ state = self._get_fsdp_state()
597
+ if not (fsdp_param_group := state._fsdp_param_group):
598
+ return ret
599
+ # TODO: Remove this padding logic once DTensor pads the local tensor:
600
+ # https://github.com/pytorch/pytorch/issues/113045
601
+ with torch.no_grad():
602
+ for fsdp_param in fsdp_param_group.fsdp_params:
603
+ fsdp_param.reset_sharded_param()
604
+ return ret
605
+
606
+
607
+ class UnshardHandle:
608
+ """
609
+ A handle to wait on a :meth:`FSDPModule.unshard` op.
610
+ """
611
+
612
+ def wait(self) -> None:
613
+ """
614
+ Waits on the unshard op. This ensures that the current stream can use
615
+ the unsharded parameters, which are now registered to the module.
616
+ """
617
+ return
618
+
619
+
620
+ class _UnshardHandleImpl(UnshardHandle):
621
+ def __init__(self, fsdp_param_group: Optional[FSDPParamGroup]):
622
+ self._fsdp_param_group = fsdp_param_group
623
+
624
+ def wait(self):
625
+ if self._fsdp_param_group is not None:
626
+ self._fsdp_param_group.wait_for_unshard()
627
+ # Avoid keeping a reference
628
+ self._fsdp_param_group = None
629
+
630
+
631
+ def register_fsdp_forward_method(module: nn.Module, method_name: str) -> None:
632
+ """
633
+ Registers a method on ``module`` to be considered a forward method for
634
+ FSDP.
635
+
636
+ FSDP all-gathers parameters pre-forward and optionally frees parameters
637
+ post-forward (depending on ``reshard_after_forward``). FSDP only knows to
638
+ do this for :meth:`nn.Module.forward` by default. This function patches a
639
+ user-specified method to run the pre/post-forward hooks before/after the
640
+ method, respectively. If ``module`` is not an :class:`FSDPModule`, then
641
+ this is a no-op.
642
+
643
+ Args:
644
+ module (nn.Module): Module to register the forward method on.
645
+ method_name (str): Name of the forward method.
646
+ """
647
+ if not isinstance(module, FSDPModule):
648
+ # Make no-op to allow including both when using/not using FSDP
649
+ return
650
+ if not hasattr(module, method_name):
651
+ raise ValueError(f"{type(module)} does not have a method {method_name}")
652
+ orig_method = getattr(module, method_name)
653
+
654
+ @functools.wraps(orig_method)
655
+ def wrapped_method(self, *args, **kwargs):
656
+ fsdp_state = self._get_fsdp_state()
657
+ args, kwargs = fsdp_state._pre_forward(self, args, kwargs)
658
+ out = orig_method(*args, **kwargs)
659
+ return fsdp_state._post_forward(self, args, out)
660
+
661
+ # Use `__get__` to make `wrapped_method` an instance method
662
+ setattr(
663
+ module,
664
+ method_name,
665
+ wrapped_method.__get__(module, type(module)), # type:ignore[attr-defined]
666
+ )
667
+
668
+
669
+ def _assert_all_fsdp_modules(modules: Iterable[Any]) -> None:
670
+ for module in modules:
671
+ if not isinstance(module, FSDPModule):
672
+ raise ValueError(f"Expects FSDPModule but got {type(module)}: {module}")
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LLaVAOneVision1_5_ForConditionalGeneration"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_llavaonevision1_5.Llavaonevision1_5Config",
7
+ "AutoModel": "modeling_llavaonevision1_5.LLaVAOneVision1_5_ForConditionalGeneration",
8
+ "AutoModelForCausalLM": "modeling_llavaonevision1_5.LLaVAOneVision1_5_ForConditionalGeneration"
9
+ },
10
+ "dtype": "bfloat16",
11
+ "image_token_id": 151655,
12
+ "model_type": "llavaonevision1_5",
13
+ "text_config": {
14
+ "attention_bias": false,
15
+ "attention_dropout": 0.0,
16
+ "head_dim": 128,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "image_token_id": null,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 12288,
22
+ "layer_types": [
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention"
59
+ ],
60
+ "max_position_embeddings": 32768,
61
+ "max_window_layers": 36,
62
+ "model_type": "LLaVAOneVision1_5_text",
63
+ "num_attention_heads": 32,
64
+ "num_hidden_layers": 36,
65
+ "num_key_value_heads": 8,
66
+ "rms_norm_eps": 1e-06,
67
+ "rope_scaling": null,
68
+ "rope_theta": 1000000.0,
69
+ "sliding_window": null,
70
+ "use_cache": true,
71
+ "use_sliding_window": false,
72
+ "video_token_id": null,
73
+ "vocab_size": 151936
74
+ },
75
+ "transformers_version": "4.56.1",
76
+ "video_token_id": 151656,
77
+ "vision_config": {
78
+ "depth": 24,
79
+ "embed_dim": 1024,
80
+ "hidden_act": "gelu",
81
+ "hidden_size": 1024,
82
+ "in_channels": 3,
83
+ "initializer_range": 0.02,
84
+ "intermediate_size": 4096,
85
+ "layer_norm_eps": 1e-05,
86
+ "model_type": "rice_vit",
87
+ "num_heads": 16,
88
+ "patch_size": 14,
89
+ "spatial_merge_size": 2,
90
+ "temporal_patch_size": 1,
91
+ "text_hidden_size": 4096
92
+ },
93
+ "vocab_size": 151936
94
+ }
configuration_llavaonevision1_5.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from transformers.configuration_utils import PretrainedConfig, layer_type_validation
16
+ from transformers.modeling_rope_utils import rope_config_validation
17
+ from transformers.utils import logging
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+ class RiceConfig(PretrainedConfig):
22
+ model_type = "rice_vit"
23
+ base_config_key = "vision_config"
24
+
25
+ def __init__(
26
+ self,
27
+ depth=24,
28
+ embed_dim=1024,
29
+ hidden_size=1024,
30
+ hidden_act="gelu",
31
+ intermediate_size=4096,
32
+ num_heads=16,
33
+ in_channels=3,
34
+ patch_size=14,
35
+ spatial_merge_size=2,
36
+ temporal_patch_size=1,
37
+ initializer_range=0.02,
38
+ layer_norm_eps=1e-05,
39
+ text_hidden_size=2560,
40
+ **kwargs,
41
+ ):
42
+ super().__init__(**kwargs)
43
+
44
+ self.depth = depth
45
+ self.embed_dim = embed_dim
46
+ self.hidden_size = hidden_size
47
+ self.hidden_act = hidden_act
48
+ self.intermediate_size = intermediate_size
49
+ self.num_heads = num_heads
50
+ self.in_channels = in_channels
51
+ self.patch_size = patch_size
52
+ self.spatial_merge_size = spatial_merge_size
53
+ self.temporal_patch_size = temporal_patch_size
54
+ self.initializer_range = initializer_range
55
+ self.layer_norm_eps = layer_norm_eps
56
+ self.text_hidden_size = text_hidden_size
57
+
58
+
59
+ class LLaVAOneVision1_5_TextConfig(PretrainedConfig):
60
+ r"""
61
+ Args:
62
+ vocab_size (`int`, *optional*, defaults to 152064):
63
+ Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
64
+ `inputs_ids` passed when calling [`Qwen2VLModel`]
65
+ hidden_size (`int`, *optional*, defaults to 8192):
66
+ Dimension of the hidden representations.
67
+ intermediate_size (`int`, *optional*, defaults to 29568):
68
+ Dimension of the MLP representations.
69
+ num_hidden_layers (`int`, *optional*, defaults to 80):
70
+ Number of hidden layers in the Transformer encoder.
71
+ num_attention_heads (`int`, *optional*, defaults to 64):
72
+ Number of attention heads for each attention layer in the Transformer encoder.
73
+ num_key_value_heads (`int`, *optional*, defaults to 8):
74
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
75
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
76
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
77
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
78
+ by meanpooling all the original heads within that group. For more details checkout [this
79
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
80
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
81
+ The non-linear activation function (function or string) in the decoder.
82
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
83
+ The maximum sequence length that this model might ever be used with.
84
+ initializer_range (`float`, *optional*, defaults to 0.02):
85
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
86
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
87
+ The epsilon used by the rms normalization layers.
88
+ use_cache (`bool`, *optional*, defaults to `True`):
89
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
90
+ relevant if `config.is_decoder=True`.
91
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
92
+ Whether the model's input and output word embeddings should be tied.
93
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
94
+ The base period of the RoPE embeddings.
95
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
96
+ Whether to use sliding window attention.
97
+ sliding_window (`int`, *optional*, defaults to 4096):
98
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
99
+ max_window_layers (`int`, *optional*, defaults to 80):
100
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+ rope_scaling (`Dict`, *optional*):
104
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
105
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
106
+ accordingly.
107
+ Expected contents:
108
+ `rope_type` (`str`):
109
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
110
+ 'llama3'], with 'default' being the original RoPE implementation.
111
+ `factor` (`float`, *optional*):
112
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
113
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
114
+ original maximum pre-trained length.
115
+ `original_max_position_embeddings` (`int`, *optional*):
116
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
117
+ pretraining.
118
+ `attention_factor` (`float`, *optional*):
119
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
120
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
121
+ `factor` field to infer the suggested value.
122
+ `beta_fast` (`float`, *optional*):
123
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
124
+ ramp function. If unspecified, it defaults to 32.
125
+ `beta_slow` (`float`, *optional*):
126
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
127
+ ramp function. If unspecified, it defaults to 1.
128
+ `short_factor` (`List[float]`, *optional*):
129
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
130
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
131
+ size divided by the number of attention heads divided by 2
132
+ `long_factor` (`List[float]`, *optional*):
133
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
134
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
135
+ size divided by the number of attention heads divided by 2
136
+ `low_freq_factor` (`float`, *optional*):
137
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
138
+ `high_freq_factor` (`float`, *optional*):
139
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
140
+ image_token_id (`int`, *optional*):
141
+ Token index used as placeholder for image embeddings.
142
+ video_token_id (`int`, *optional*):
143
+ Token index used as placeholder for video embeddings.
144
+
145
+ """
146
+
147
+ model_type = "LLaVAOneVision1_5_text"
148
+ base_config_key = "text_config"
149
+ keys_to_ignore_at_inference = ["past_key_values"]
150
+ # Default tensor parallel plan for base model `Qwen2VL`
151
+ base_model_tp_plan = {
152
+ "layers.*.self_attn.q_proj": "colwise",
153
+ "layers.*.self_attn.k_proj": "colwise",
154
+ "layers.*.self_attn.v_proj": "colwise",
155
+ "layers.*.self_attn.o_proj": "rowwise",
156
+ "layers.*.mlp.gate_proj": "colwise",
157
+ "layers.*.mlp.up_proj": "colwise",
158
+ "layers.*.mlp.down_proj": "rowwise",
159
+ }
160
+ base_model_pp_plan = {
161
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
162
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
163
+ "norm": (["hidden_states"], ["hidden_states"]),
164
+ }
165
+
166
+ def __init__(
167
+ self,
168
+ vocab_size=151936,
169
+ hidden_size=4096,
170
+ intermediate_size=12288,
171
+ num_hidden_layers=36,
172
+ num_attention_heads=32,
173
+ num_key_value_heads=8,
174
+ head_dim=128,
175
+ hidden_act="silu",
176
+ max_position_embeddings=32768,
177
+ initializer_range=0.02,
178
+ rms_norm_eps=1e-06,
179
+ use_cache=True,
180
+ tie_word_embeddings=False,
181
+ rope_theta=1000000.0,
182
+ attention_bias=False,
183
+ use_sliding_window=False,
184
+ sliding_window=None,
185
+ max_window_layers=36,
186
+ attention_dropout=0.0,
187
+ rope_scaling=None,
188
+ layer_types=None,
189
+ image_token_id=None,
190
+ video_token_id=None,
191
+ **kwargs,
192
+ ):
193
+ self.vocab_size = vocab_size
194
+ self.max_position_embeddings = max_position_embeddings
195
+ self.hidden_size = hidden_size
196
+ self.intermediate_size = intermediate_size
197
+ self.num_hidden_layers = num_hidden_layers
198
+ self.num_attention_heads = num_attention_heads
199
+ self.use_sliding_window = use_sliding_window
200
+ self.sliding_window = sliding_window
201
+ self.max_window_layers = max_window_layers
202
+
203
+ # for backward compatibility
204
+ if num_key_value_heads is None:
205
+ num_key_value_heads = num_attention_heads
206
+
207
+ self.num_key_value_heads = num_key_value_heads
208
+ self.head_dim = head_dim
209
+ self.hidden_act = hidden_act
210
+ self.initializer_range = initializer_range
211
+ self.rms_norm_eps = rms_norm_eps
212
+ self.use_cache = use_cache
213
+ self.rope_theta = rope_theta
214
+ self.attention_dropout = attention_dropout
215
+ self.rope_scaling = rope_scaling
216
+ self.attention_bias = attention_bias
217
+ self.tie_word_embeddings = tie_word_embeddings
218
+
219
+ # Validate the correctness of rotary position embeddings parameters
220
+ # BC: if there is a 'type' field, move it to 'rope_type'.
221
+ # and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
222
+ # one can set it to "linear"/"dynamic" etc. to have scaled RoPE
223
+ # TODO: @raushan update config in the hub
224
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
225
+ if self.rope_scaling["type"] == "mrope":
226
+ self.rope_scaling["type"] = "default"
227
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
228
+ rope_config_validation(self, ignore_keys={"mrope_section"})
229
+ self.image_token_id = image_token_id
230
+ self.video_token_id = video_token_id
231
+
232
+ self.layer_types = layer_types
233
+ if self.layer_types is None:
234
+ self.layer_types = [
235
+ "sliding_attention"
236
+ if self.sliding_window is not None and i >= self.max_window_layers
237
+ else "full_attention"
238
+ for i in range(self.num_hidden_layers)
239
+ ]
240
+ layer_type_validation(self.layer_types)
241
+
242
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
243
+
244
+
245
+ class Llavaonevision1_5Config(PretrainedConfig):
246
+ r"""
247
+ Args:
248
+ text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`):
249
+ The config object or dictionary of the text backbone.
250
+ vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`):
251
+ The config object or dictionary of the vision backbone.
252
+ image_token_id (`int`, *optional*, defaults to 151655):
253
+ The image token index to encode the image prompt.
254
+ video_token_id (`int`, *optional*, defaults to 151656):
255
+ The video token index to encode the image prompt.
256
+ """
257
+
258
+ model_type = "llavaonevision1_5"
259
+ sub_configs = {"vision_config": RiceConfig, "text_config": LLaVAOneVision1_5_TextConfig}
260
+ keys_to_ignore_at_inference = ["past_key_values"]
261
+
262
+ def __init__(
263
+ self,
264
+ text_config=None,
265
+ vision_config=None,
266
+ image_token_id=151655,
267
+ video_token_id=151656,
268
+ vocab_size=152064,
269
+ **kwargs,
270
+ ):
271
+ if isinstance(vision_config, dict):
272
+ self.vision_config = self.sub_configs["vision_config"](**vision_config)
273
+ elif vision_config is None:
274
+ self.vision_config = self.sub_configs["vision_config"]()
275
+
276
+ if isinstance(text_config, dict):
277
+ self.text_config = self.sub_configs["text_config"](**text_config)
278
+ elif text_config is None:
279
+ # For BC use all kwargs to init `TextConfig`
280
+ self.text_config = self.sub_configs["text_config"](**kwargs)
281
+
282
+ self.image_token_id = image_token_id
283
+ self.video_token_id = video_token_id
284
+ self.vocab_size = vocab_size
285
+
286
+ super().__init__(**kwargs)
287
+
288
+ __all__ = ["Llavaonevision1_5Config", "LLaVAOneVision1_5_TextConfig"]
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": 151645,
6
+ "pad_token_id": 151643,
7
+ "repetition_penalty": 1.05,
8
+ "temperature": 1e-06,
9
+ "transformers_version": "4.56.1"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0294027929d67d68ef00ac85691fb4c5b54a86c9a320df39e0e1ed19a53874b4
3
+ size 4904122744
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9665b3077463f543af0a8e5603c50c8048d60b6a5f7d29559cf0ca700f9b36f
3
+ size 4915960344
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b7173f596166206d13a3f0b49e9d807f5e8cc6920a7df94f89e605be8abb6b5
3
+ size 4915960368
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6d884741c523efa028a24ff497ff25af25fb4e885f140f41f11a0d46ad18ca1
3
+ size 2318463256
model.safetensors.index.json ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8527214624,
4
+ "total_size": 17054429248
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
145
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
152
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
307
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
309
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
310
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
311
+ "model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
318
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
319
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
321
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
322
+ "model.layers.34.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
323
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
324
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
325
+ "model.layers.34.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
326
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
327
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
334
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
337
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
338
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
339
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
374
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
377
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
384
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
385
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
386
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
388
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
389
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
391
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
392
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
393
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
394
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
395
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
396
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
398
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
399
+ "model.layers.9.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
400
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
401
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
402
+ "model.layers.9.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
403
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
404
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
405
+ "model.norm.weight": "model-00004-of-00004.safetensors",
406
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
694
+ "visual.class_embedding": "model-00001-of-00004.safetensors",
695
+ "visual.class_pos_emb": "model-00001-of-00004.safetensors",
696
+ "visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
697
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
698
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
699
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
700
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
701
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
702
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
703
+ "visual.pre_layernorm.bias": "model-00001-of-00004.safetensors",
704
+ "visual.pre_layernorm.weight": "model-00001-of-00004.safetensors"
705
+ }
706
+ }
modeling_llavaonevision1_5.py ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "disable_grouping": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_mean": [
13
+ 0.48145466,
14
+ 0.4578275,
15
+ 0.40821073
16
+ ],
17
+ "image_processor_type": "Qwen2VLImageProcessorFast",
18
+ "image_std": [
19
+ 0.26862954,
20
+ 0.26130258,
21
+ 0.27577711
22
+ ],
23
+ "input_data_format": null,
24
+ "max_pixels": 3240000,
25
+ "merge_size": 2,
26
+ "min_pixels": 3136,
27
+ "patch_size": 14,
28
+ "processor_class": "Qwen2_5_VLProcessor",
29
+ "resample": 3,
30
+ "rescale_factor": 0.00392156862745098,
31
+ "return_tensors": null,
32
+ "size": {
33
+ "longest_edge": 3240000,
34
+ "shortest_edge": 3136
35
+ },
36
+ "temporal_patch_size": 1
37
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "processor_class": "Qwen2_5_VLProcessor",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null,
208
+ "use_fast": true
209
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_pad": null,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "do_sample_frames": false,
13
+ "fps": null,
14
+ "image_mean": [
15
+ 0.48145466,
16
+ 0.4578275,
17
+ 0.40821073
18
+ ],
19
+ "image_std": [
20
+ 0.26862954,
21
+ 0.26130258,
22
+ 0.27577711
23
+ ],
24
+ "input_data_format": null,
25
+ "max_frames": 768,
26
+ "max_pixels": 3240000,
27
+ "merge_size": 2,
28
+ "min_frames": 4,
29
+ "min_pixels": 3136,
30
+ "num_frames": null,
31
+ "patch_size": 14,
32
+ "processor_class": "Qwen2_5_VLProcessor",
33
+ "resample": 3,
34
+ "rescale_factor": 0.00392156862745098,
35
+ "return_metadata": false,
36
+ "size": {
37
+ "longest_edge": 3240000,
38
+ "shortest_edge": 3136
39
+ },
40
+ "size_divisor": null,
41
+ "temporal_patch_size": 1,
42
+ "video_metadata": null,
43
+ "video_processor_type": "Qwen2VLVideoProcessor"
44
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff