Upload folder using huggingface_hub
Browse files- README.md +185 -0
- config.json +50 -0
- onnx/model.onnx +3 -0
- onnx/model_bnb4.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_int8.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
- quantize_config.json +18 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
datasets:
|
| 4 |
+
- conll2003
|
| 5 |
+
license: mit
|
| 6 |
+
model-index:
|
| 7 |
+
- name: dslim/bert-base-NER
|
| 8 |
+
results:
|
| 9 |
+
- task:
|
| 10 |
+
type: token-classification
|
| 11 |
+
name: Token Classification
|
| 12 |
+
dataset:
|
| 13 |
+
name: conll2003
|
| 14 |
+
type: conll2003
|
| 15 |
+
config: conll2003
|
| 16 |
+
split: test
|
| 17 |
+
metrics:
|
| 18 |
+
- name: Accuracy
|
| 19 |
+
type: accuracy
|
| 20 |
+
value: 0.9118041001560013
|
| 21 |
+
verified: true
|
| 22 |
+
- name: Precision
|
| 23 |
+
type: precision
|
| 24 |
+
value: 0.9211550382257732
|
| 25 |
+
verified: true
|
| 26 |
+
- name: Recall
|
| 27 |
+
type: recall
|
| 28 |
+
value: 0.9306415698281261
|
| 29 |
+
verified: true
|
| 30 |
+
- name: F1
|
| 31 |
+
type: f1
|
| 32 |
+
value: 0.9258740048459675
|
| 33 |
+
verified: true
|
| 34 |
+
- name: loss
|
| 35 |
+
type: loss
|
| 36 |
+
value: 0.48325642943382263
|
| 37 |
+
verified: true
|
| 38 |
+
library_name: transformers.js
|
| 39 |
+
base_model:
|
| 40 |
+
- dslim/bert-base-NER
|
| 41 |
+
pipeline_tag: token-classification
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# bert-base-NER (ONNX)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
This is an ONNX version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
## Usage with Transformers.js
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
See the pipeline documentation for `token-classification`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TokenClassificationPipeline
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# bert-base-NER
|
| 62 |
+
|
| 63 |
+
If my open source models have been useful to you, please consider supporting me in building small, useful AI models for everyone (and help me afford med school / help out my parents financially). Thanks!
|
| 64 |
+
|
| 65 |
+
<a href="https://www.buymeacoffee.com/dslim" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/arial-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
|
| 66 |
+
|
| 67 |
+
## Model description
|
| 68 |
+
|
| 69 |
+
**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
|
| 70 |
+
|
| 71 |
+
Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
|
| 72 |
+
|
| 73 |
+
If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a [**bert-large-NER**](https://huggingface.co/dslim/bert-large-NER/) version is also available.
|
| 74 |
+
|
| 75 |
+
### Available NER models
|
| 76 |
+
| Model Name | Description | Parameters |
|
| 77 |
+
|-------------------|-------------|------------------|
|
| 78 |
+
| [distilbert-NER](https://huggingface.co/dslim/distilbert-NER) **(NEW!)** | Fine-tuned DistilBERT - a smaller, faster, lighter version of BERT | 66M |
|
| 79 |
+
| [bert-large-NER](https://huggingface.co/dslim/bert-large-NER/) | Fine-tuned bert-large-cased - larger model with slightly better performance | 340M |
|
| 80 |
+
| [bert-base-NER](https://huggingface.co/dslim/bert-base-NER)-([uncased](https://huggingface.co/dslim/bert-base-NER-uncased)) | Fine-tuned bert-base, available in both cased and uncased versions | 110M |
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
## Intended uses & limitations
|
| 84 |
+
|
| 85 |
+
#### How to use
|
| 86 |
+
|
| 87 |
+
You can use this model with Transformers *pipeline* for NER.
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 91 |
+
from transformers import pipeline
|
| 92 |
+
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
| 94 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
| 95 |
+
|
| 96 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 97 |
+
example = "My name is Wolfgang and I live in Berlin"
|
| 98 |
+
|
| 99 |
+
ner_results = nlp(example)
|
| 100 |
+
print(ner_results)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
#### Limitations and bias
|
| 104 |
+
|
| 105 |
+
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
|
| 106 |
+
|
| 107 |
+
## Training data
|
| 108 |
+
|
| 109 |
+
This model was fine-tuned on English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
|
| 110 |
+
|
| 111 |
+
The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes:
|
| 112 |
+
|
| 113 |
+
Abbreviation|Description
|
| 114 |
+
-|-
|
| 115 |
+
O|Outside of a named entity
|
| 116 |
+
B-MISC |Beginning of a miscellaneous entity right after another miscellaneous entity
|
| 117 |
+
I-MISC | Miscellaneous entity
|
| 118 |
+
B-PER |Beginning of a person’s name right after another person’s name
|
| 119 |
+
I-PER |Person’s name
|
| 120 |
+
B-ORG |Beginning of an organization right after another organization
|
| 121 |
+
I-ORG |organization
|
| 122 |
+
B-LOC |Beginning of a location right after another location
|
| 123 |
+
I-LOC |Location
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
### CoNLL-2003 English Dataset Statistics
|
| 127 |
+
This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
|
| 128 |
+
#### # of training examples per entity type
|
| 129 |
+
Dataset|LOC|MISC|ORG|PER
|
| 130 |
+
-|-|-|-|-
|
| 131 |
+
Train|7140|3438|6321|6600
|
| 132 |
+
Dev|1837|922|1341|1842
|
| 133 |
+
Test|1668|702|1661|1617
|
| 134 |
+
#### # of articles/sentences/tokens per dataset
|
| 135 |
+
Dataset |Articles |Sentences |Tokens
|
| 136 |
+
-|-|-|-
|
| 137 |
+
Train |946 |14,987 |203,621
|
| 138 |
+
Dev |216 |3,466 |51,362
|
| 139 |
+
Test |231 |3,684 |46,435
|
| 140 |
+
|
| 141 |
+
## Training procedure
|
| 142 |
+
|
| 143 |
+
This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task.
|
| 144 |
+
|
| 145 |
+
## Eval results
|
| 146 |
+
metric|dev|test
|
| 147 |
+
-|-|-
|
| 148 |
+
f1 |95.1 |91.3
|
| 149 |
+
precision |95.0 |90.7
|
| 150 |
+
recall |95.3 |91.9
|
| 151 |
+
|
| 152 |
+
The test metrics are a little lower than the official Google BERT results which encoded document context & experimented with CRF. More on replicating the original results [here](https://github.com/google-research/bert/issues/223).
|
| 153 |
+
|
| 154 |
+
### BibTeX entry and citation info
|
| 155 |
+
|
| 156 |
+
```
|
| 157 |
+
@article{DBLP:journals/corr/abs-1810-04805,
|
| 158 |
+
author = {Jacob Devlin and
|
| 159 |
+
Ming{-}Wei Chang and
|
| 160 |
+
Kenton Lee and
|
| 161 |
+
Kristina Toutanova},
|
| 162 |
+
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
|
| 163 |
+
Understanding},
|
| 164 |
+
journal = {CoRR},
|
| 165 |
+
volume = {abs/1810.04805},
|
| 166 |
+
year = {2018},
|
| 167 |
+
url = {http://arxiv.org/abs/1810.04805},
|
| 168 |
+
archivePrefix = {arXiv},
|
| 169 |
+
eprint = {1810.04805},
|
| 170 |
+
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
|
| 171 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
|
| 172 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 173 |
+
}
|
| 174 |
+
```
|
| 175 |
+
```
|
| 176 |
+
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
|
| 177 |
+
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
|
| 178 |
+
author = "Tjong Kim Sang, Erik F. and
|
| 179 |
+
De Meulder, Fien",
|
| 180 |
+
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
|
| 181 |
+
year = "2003",
|
| 182 |
+
url = "https://www.aclweb.org/anthology/W03-0419",
|
| 183 |
+
pages = "142--147",
|
| 184 |
+
}
|
| 185 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
| 3 |
+
"_name_or_path": "dslim/bert-base-NER",
|
| 4 |
+
"_num_labels": 9,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"BertForTokenClassification"
|
| 7 |
+
],
|
| 8 |
+
"attention_probs_dropout_prob": 0.1,
|
| 9 |
+
"classifier_dropout": null,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "O",
|
| 15 |
+
"1": "B-MISC",
|
| 16 |
+
"2": "I-MISC",
|
| 17 |
+
"3": "B-PER",
|
| 18 |
+
"4": "I-PER",
|
| 19 |
+
"5": "B-ORG",
|
| 20 |
+
"6": "I-ORG",
|
| 21 |
+
"7": "B-LOC",
|
| 22 |
+
"8": "I-LOC"
|
| 23 |
+
},
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"intermediate_size": 3072,
|
| 26 |
+
"label2id": {
|
| 27 |
+
"B-LOC": 7,
|
| 28 |
+
"B-MISC": 1,
|
| 29 |
+
"B-ORG": 5,
|
| 30 |
+
"B-PER": 3,
|
| 31 |
+
"I-LOC": 8,
|
| 32 |
+
"I-MISC": 2,
|
| 33 |
+
"I-ORG": 6,
|
| 34 |
+
"I-PER": 4,
|
| 35 |
+
"O": 0
|
| 36 |
+
},
|
| 37 |
+
"layer_norm_eps": 1e-12,
|
| 38 |
+
"max_position_embeddings": 512,
|
| 39 |
+
"model_type": "bert",
|
| 40 |
+
"num_attention_heads": 12,
|
| 41 |
+
"num_hidden_layers": 12,
|
| 42 |
+
"output_past": true,
|
| 43 |
+
"pad_token_id": 0,
|
| 44 |
+
"position_embedding_type": "absolute",
|
| 45 |
+
"torch_dtype": "float32",
|
| 46 |
+
"transformers_version": "4.49.0",
|
| 47 |
+
"type_vocab_size": 2,
|
| 48 |
+
"use_cache": true,
|
| 49 |
+
"vocab_size": 28996
|
| 50 |
+
}
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c7333b3c8345c86535d8739470fb65011aea09943375ea8a89e008c6463c018
|
| 3 |
+
size 431214198
|
onnx/model_bnb4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6fb7bbae9351c29a7f83b54e4e00d6eb07320d0c988add52bea1290ff35e96d
|
| 3 |
+
size 139238911
|
onnx/model_fp16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3738498eae2bf81f247386667fff2074cbdc0085e5b8c155afd44883fb4762dd
|
| 3 |
+
size 215761276
|
onnx/model_int8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b324e829f1fad3b897f926d1a1d1372803c6d04546831a3a2ed103652b916adf
|
| 3 |
+
size 108908107
|
onnx/model_q4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d370232c24058eae9e27b05845c406a103ad0793dbd88e1547dd49e4f8276e3
|
| 3 |
+
size 144547224
|
onnx/model_q4f16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15efa3b81446543cc2e255825e452e66766aaadfe3ab11e21a3ca2984db5666d
|
| 3 |
+
size 93668689
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b324e829f1fad3b897f926d1a1d1372803c6d04546831a3a2ed103652b916adf
|
| 3 |
+
size 108908107
|
onnx/model_uint8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82205ea6f29ad865269c1a0b0258e83e39d70097d81065e8cbff1980050f2eb7
|
| 3 |
+
size 108908107
|
quantize_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"modes": [
|
| 3 |
+
"fp16",
|
| 4 |
+
"q8",
|
| 5 |
+
"int8",
|
| 6 |
+
"uint8",
|
| 7 |
+
"q4",
|
| 8 |
+
"q4f16",
|
| 9 |
+
"bnb4"
|
| 10 |
+
],
|
| 11 |
+
"per_channel": true,
|
| 12 |
+
"reduce_range": true,
|
| 13 |
+
"block_size": null,
|
| 14 |
+
"is_symmetric": true,
|
| 15 |
+
"accuracy_level": null,
|
| 16 |
+
"quant_type": 1,
|
| 17 |
+
"op_block_list": null
|
| 18 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"max_len": 512,
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"never_split": null,
|
| 53 |
+
"pad_token": "[PAD]",
|
| 54 |
+
"sep_token": "[SEP]",
|
| 55 |
+
"strip_accents": null,
|
| 56 |
+
"tokenize_chinese_chars": true,
|
| 57 |
+
"tokenizer_class": "BertTokenizer",
|
| 58 |
+
"unk_token": "[UNK]"
|
| 59 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|