AmodalGen3D: Generative Amodal 3D Object Reconstruction from Sparse Unposed Views
Abstract
AmodalGen3D is a generative framework that reconstructs complete 3D objects from sparse, occluded views by combining 2D completion priors with multi-view stereo geometry through specialized attention mechanisms.
Reconstructing 3D objects from a few unposed and partially occluded views is a common yet challenging problem in real-world scenarios, where many object surfaces are never directly observed. Traditional multi-view or inpainting-based approaches struggle under such conditions, often yielding incomplete or geometrically inconsistent reconstructions. We introduce AmodalGen3D, a generative framework for amodal 3D object reconstruction that infers complete, occlusion-free geometry and appearance from arbitrary sparse inputs. The model integrates 2D amodal completion priors with multi-view stereo geometry conditioning, supported by a View-Wise Cross Attention mechanism for sparse-view feature fusion and a Stereo-Conditioned Cross Attention module for unobserved structure inference. By jointly modeling visible and hidden regions, AmodalGen3D faithfully reconstructs 3D objects that are consistent with sparse-view constraints while plausibly hallucinating unseen parts. Experiments on both synthetic and real-world datasets demonstrate that AmodalGen3D achieves superior fidelity and completeness under occlusion-heavy sparse-view settings, addressing a pressing need for object-level 3D scene reconstruction in robotics, AR/VR, and embodied AI applications.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper